mindspore.ops
可用于Cell的构造函数的算子。
import mindspore.ops as ops
MindSpore中 mindspore.ops 接口与上一版本相比,新增、删除和支持平台的变化信息请参考 API Updates 。
算子原语
| Primitive是Python中算子原语的基类。 | |
| PrimitiveWithCheck是Python中原语的基类,定义了检查算子输入参数的函数,但是使用了C++源码中注册的推理方法。 | |
| PrimitiveWithInfer是Python中的原语基类,在python中定义了跟踪推理的函数。 | 
装饰器
| 创建PrimiveWithInfer算子,用于在编译时推断值。 | |
| A decorator which is used to bind the registration information to the func parameter of  | |
| 用于MindSpore Hybrid DSL函数书写的装饰器。 | |
| 用于注册算子的装饰器。 | |
| Primitive属性的注册器。 | 
神经网络层算子
神经网络
| 接口名 | 概述 | 支持平台 | 
| 对输入的多维数据进行二维平均池化运算。 | 
 | |
| 对输入的多维数据进行三维的平均池化运算。 | 
 | |
| It's similar to operator  | 弃用 | |
| 对输入数据进行归一化(Batch Normalization)和更新参数。 | 
 | |
| 2D convolution layer. | 
 | |
| The Conv2DBackpropInput interface is deprecated, please refer to  | 弃用 | |
| Compute a 2D transposed convolution, which is also known as a deconvolution (although it is not an actual deconvolution). | 
 | |
| 3D convolution layer. | 
 | |
| Computes a 3D transposed convolution, which is also known as a deconvolution (although it is not an actual deconvolution). | 
 | |
| Performs greedy decoding on the logits given in inputs. | 
 | |
| DepthwiseConv2dNative will be deprecated in the future. | 弃用 | |
| Dropout是一种正则化手段,通过在训练中以 \(1 - keep\_prob\) 的概率随机将神经元输出设置为0,起到减少神经元相关性的作用,避免过拟合。 | 
 | |
| 在训练期间,根据概率 1 - keep_prob ,随机的将一些通道设置为0,且服从伯努利分布。 | 
 | |
| 随机丢弃层。 | 
 | |
| The DropoutDoMask interface is deprecated, please use the  | 弃用 | |
| The DropoutGenMask interface is deprecated, please use the  | 弃用 | |
| Applies a single-layer gated recurrent unit (GRU) to an input sequence. | 
 | |
| Applies a recurrent neural network to the input. | 
 | |
| 扁平化(Flatten)输入Tensor,不改变0轴的size。 | 
 | |
| 在输入Tensor上应用层归一化(Layer Normalization)。 | 
 | |
| Local Response Normalization. | 
 | |
| Performs the Long Short-Term Memory (LSTM) on the input. | 
 | |
| 对输入的多维数据进行二维的最大池化运算。 | 
 | |
| 对输入的多维数据进行三维的最大池化运算。 | 
 | |
| 对输入Tensor执行最大池化运算,并返回最大值和索引。 | 
 | |
| Pads the input tensor according to the paddings and mode. | 
 | |
| 根据参数 paddings 对输入进行填充。 | 
 | |
| 根据指定的索引,返回输入Tensor的切片。 | 
 | |
| 将输入Tensor的最后一个维度从1扩展到 pad_dim_size ,其填充值为0。 | 
 | |
| 使用最近邻插值算法调整输入Tensor为指定大小。 | 
 | |
| 使用双线性插值调整图像大小到指定的大小。 | 
 | 
损失函数
| 接口名 | 概述 | 支持平台 | 
| 输入经过sigmoid激活函数后作为预测值,BCEWithLogitsLoss计算预测值和目标值之间的二值交叉熵损失。 | 
 | |
| Computes the binary cross entropy between the logits and the labels. | 
 | |
| Calculates the CTC (Connectionist Temporal Classification) loss and the gradient. | 
 | |
| Computes the Kullback-Leibler divergence between the logits and the labels. | 
 | |
| 用于计算L2范数的一半,但不对结果进行开方操作。 | 
 | |
| 获取预测值和目标值之间的负对数似然损失。 | 
 | |
| Computes the RNNTLoss and its gradient with respect to the softmax outputs. | 
 | |
| 计算预测值与真实值之间的sigmoid交叉熵。 | 
 | |
| Computes smooth L1 loss, a robust L1 loss. | 
 | |
| SoftMarginLoss operation. | 
 | |
| 使用one-hot编码获取预测值和真实之间的softmax交叉熵。 | 
 | |
| Computes the softmax cross-entropy value between logits and sparse encoding labels. | 
 | 
激活函数
| 接口名 | 概述 | 支持平台 | 
| 指数线性单元激活函数(Exponential Linear Unit activation function)。 | 
 | |
| Fast Gaussian Error Linear Units activation function. | 
 | |
| 高斯误差线性单元激活函数(Gaussian Error Linear Units activation function)。 | 
 | |
| Applies the hard shrinkage function element-wise, each element complies with the following function: | 
 | |
| Hard sigmoid activation function. | 
 | |
| Hard swish activation function. | 
 | |
| LogSoftmax激活函数。 | 
 | |
| Computes MISH(A Self Regularized Non-Monotonic Neural Activation Function) of input tensors element-wise. | 
 | |
| 带参数的线性修正单元激活函数(Parametric Rectified Linear Unit activation function)。 | 
 | |
| 线性修正单元激活函数(Rectified Linear Unit)。 | 
 | |
| Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise. | 
 | |
| 线性修正单元激活函数(Rectified Linear Unit activation function)。 | 
 | |
| 激活函数SeLU(Scaled exponential Linear Unit)。 | 
 | |
| Sigmoid激活函数。 | 
 | |
| Softmax函数。 | 
 | |
| Softplus activation function. | 
 | |
| Applies the SoftShrink function element-wise. | 
 | |
| Softsign activation function. | 
 | |
| Tanh激活函数。 | 
 | 
优化器
| 接口名 | 概述 | 支持平台 | 
| Updates gradients by the Adaptive Moment Estimation (Adam) algorithm. | 
 | |
| Updates gradients by the Adaptive Moment Estimation (Adam) algorithm. | 
 | |
| Updates gradients by the Adaptive Moment Estimation algorithm with weight decay (AdamWeightDecay). | 
 | |
| AdaptiveAvgPool2D operation. | 
 | |
| Updates relevant entries according to the adadelta scheme. | 
 | |
| Updates relevant entries according to the adagrad scheme. | 
 | |
| Update var according to the proximal adagrad scheme. | 
 | |
| Updates relevant entries according to the adagradv2 scheme. | 
 | |
| Updates relevant entries according to the adamax scheme. | 
 | |
| Updates relevant entries according to the AddSign algorithm. | 
 | |
| Optimizer that implements the centered RMSProp algorithm. | 
 | |
| Updates relevant entries according to the FTRL scheme. | 
 | |
| Updates var by subtracting alpha * delta from it. | 
 | |
| Optimizer that implements the Momentum algorithm. | 
 | |
| Updates relevant entries according to the AddSign algorithm. | 
 | |
| Updates relevant entries according to the proximal adagrad algorithm. | 
 | |
| Updates relevant entries according to the FOBOS(Forward Backward Splitting) algorithm. | 
 | |
| Optimizer that implements the Root Mean Square prop(RMSProp) algorithm. | 
 | |
| Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam) algorithm. | 
 | |
| Merges the duplicate value of the gradient and then updates relevant entries according to the FTRL-proximal scheme. | 
 | |
| Merges the duplicate value of the gradient and then updates parameters by the Adaptive Moment Estimation (Adam) algorithm. | 
 | |
| Merges the duplicate value of the gradient and then updates relevant entries according to the proximal adagrad algorithm. | 
 | |
| Conducts LARS (layer-wise adaptive rate scaling) update on the sum of squares of gradient. | 
 | |
| Updates relevant entries according to the adagrad scheme. | 
 | |
| Updates relevant entries according to the adagrad scheme, one more epsilon attribute than SparseApplyAdagrad. | 
 | |
| Updates relevant entries according to the proximal adagrad algorithm. | 
 | |
| Computes the stochastic gradient descent. | 
 | |
| Updates relevant entries according to the FTRL-proximal scheme. | 
 | |
| Updates relevant entries according to the FTRL-proximal scheme. | 
 | 
距离函数
| 接口名 | 概述 | 支持平台 | 
| Computes batched the p-norm distance between each pair of the two collections of row vectors. | 
 | |
| Computes the Levenshtein Edit Distance. | 
 | |
| Returns the matrix norm or vector norm of a given tensor. | 
 | 
采样算子
| 接口名 | 概述 | 支持平台 | 
| 计算与目标类完全匹配的抽样样本的位置id。 | 
 | |
| 使用log-uniform(Zipfian)分布对一组类别进行采样。 | 
 | |
| 使用均匀分布对一组类别进行采样。 | 
 | 
图像处理
| 接口名 | 概述 | 支持平台 | 
| Decodes bounding boxes locations. | 
 | |
| Encodes bounding boxes locations. | 
 | |
| Checks bounding box. | 
 | |
| Extracts crops from the input image tensor and resizes them. | 
 | |
| Extract patches from input and put them in the "depth" output dimension. | 
 | |
| 计算矩形的IOU,即真实区域和预测区域的交并比。 | 
 | |
| L2范数归一化算子。 | 
 | |
| When object detection problem is performed in the computer vision field, object detection algorithm generates a plurality of bounding boxes. | 
 | |
| Computes the Region of Interest (RoI) Align operator. | 
 | 
文本处理
| 接口名 | 概述 | 支持平台 | 
| Updates log_probs with repeat n-grams. | 
 | 
数学运算算子
逐元素运算
| 接口名 | 概述 | 支持平台 | 
| Returns absolute value of a tensor element-wise. | 
 | |
| Computes accumulation of all input tensors element-wise. | 
 | |
| Computes arccosine of input tensors element-wise. | 
 | |
| Computes inverse hyperbolic cosine of the inputs element-wise. | 
 | |
| 两个输入Tensor逐元素相加。 | 
 | |
| Performs the element-wise division of tensor x1 by tensor x2, multiply the result by the scalar value and add it to input_data. | 
 | |
| Performs the element-wise product of tensor x1 and tensor x2, multiply the result by the scalar value and add it to input_data. | 
 | |
| 逐元素将所有输入的Tensor相加。 | 
 | |
| Computes arcsine of input tensors element-wise. | 
 | |
| Computes inverse hyperbolic sine of the input element-wise. | 
 | |
| Computes the trigonometric inverse tangent of the input element-wise. | 
 | |
| Returns arctangent of x/y element-wise. | 
 | |
| Computes inverse hyperbolic tangent of the input element-wise. | 
 | |
| Computes BesselI0e of input element-wise. | 
 | |
| Computes BesselI1e of input element-wise. | 
 | |
| Returns bitwise and of two tensors element-wise. | 
 | |
| Returns bitwise or of two tensors element-wise. | 
 | |
| Returns bitwise xor of two tensors element-wise. | 
 | |
| 向上取整函数。 | 
 | |
| Returns a tensor of complex numbers that are the complex conjugate of each element in input. | 
 | |
| Computes cosine of input element-wise. | 
 | |
| Computes hyperbolic cosine of input element-wise. | 
 | |
| 逐元素计算第一输入Tensor除以第二输入Tensor的商。 | 
 | |
| Computes a safe divide and returns 0 if the y is zero. | 
 | |
| This operator uses equation to represent a tuple of tensors operations, you can use this operator to perform diagonal/reducesum/transpose/matmul/mul/inner product operations, etc. | 
 | |
| 逐元素计算 x 的高斯误差函数。 | 
 | |
| Computes the complementary error function of x element-wise. | 
 | |
| Computes the inverse error function of input. | 
 | |
| Returns exponential of a tensor element-wise. | 
 | |
| Returns exponential then minus 1 of a tensor element-wise. | 
 | |
| 向下取整函数。 | 
 | |
| Divides the first input tensor by the second input tensor element-wise and round down to the closest integer. | 
 | |
| Computes the remainder of division element-wise. | 
 | |
| Returns a new tensor containing imaginary value of the input. | 
 | |
| 按元素计算输入Tensor的倒数。 | 
 | |
| Flips all bits of input tensor element-wise. | 
 | |
| Does a linear interpolation of two tensors start and end based on a float or tensor weight. | 
 | |
| 逐元素返回Tensor的自然对数。 | 
 | |
| Returns the natural logarithm of one plus the input tensor element-wise. | 
 | |
| Computes the "logical AND" of two tensors element-wise. | 
 | |
| Computes the "logical NOT" of a tensor element-wise. | 
 | |
| Computes the "logical OR" of two tensors element-wise. | 
 | |
| Computes the remainder of dividing the first input tensor by the second input tensor element-wise. | 
 | |
| 两个Tensor逐元素相乘。 | 
 | |
| Computes x * y element-wise. | 
 | |
| 计算输入x的相反数并返回。 | 
 | |
| 计算 x 中每个元素的 y 次幂。 | 
 | |
| Returns a Tensor that is the real part of the input. | 
 | |
| Divides the first input tensor by the second input tensor in floating-point type element-wise. | 
 | |
| Returns reciprocal of a tensor element-wise. | 
 | |
| Returns an integer that is closest to x element-wise. | 
 | |
| 对输入数据进行四舍五入到最接近的整数数值。 | 
 | |
| Computes reciprocal of square root of input tensor element-wise. | 
 | |
| Performs sign on the tensor element-wise. | 
 | |
| Computes sine of the input element-wise. | 
 | |
| Computes hyperbolic sine of the input element-wise. | 
 | |
| 计算输入Tensor的平方根。 | 
 | |
| Returns square of a tensor element-wise. | 
 | |
| Subtracts the second input tensor from the first input tensor element-wise and returns square of it. | 
 | |
| Returns the square sum of a tensor element-wise | 
 | |
| 逐元素用第一个输入Tensor减去第二个输入Tensor。 | 
 | |
| Computes tangent of x element-wise. | 
 | |
| Divides the first input tensor by the second input tensor element-wise for integer types, negative numbers will round fractional quantities towards zero. | 
 | |
| Returns the remainder of division element-wise. | 
 | |
| Divides the first input tensor by the second input tensor element-wise. | 
 | |
| Computes the first input tensor multiplied by the logarithm of second input tensor element-wise. | 
 | 
Reduction算子
| 接口名 | 概述 | 支持平台 | 
| 返回输入Tensor在指定轴上的最大值索引。 | 
 | |
| 根据指定的索引计算最大值,并返回索引和值。 | 
 | |
| 返回输入Tensor在指定轴上的最小值索引。 | 
 | |
| 根据指定的索引计算最小值,并返回索引和值。 | 
 | |
| Reduces a dimension of a tensor by the "logicalAND" of all elements in the dimension, by default. | 
 | |
| Reduces a dimension of a tensor by the "logical OR" of all elements in the dimension, by default. | 
 | |
| 默认情况下,输出张量各维度上的最大值,以达到对所有维度进行归约的目的。 | 
 | |
| 默认情况下,输出Tensor各维度上的平均值,以达到对所有维度进行归约的目的。 | 
 | |
| Reduces a dimension of a tensor by the minimum value in the dimension, by default. | 
 | |
| Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. | 
 | |
| 默认情况下,输出Tensor各维度上的和,以达到对所有维度进行归约的目的。 | 
 | 
比较算子
| 接口名 | 概述 | 支持平台 | 
| Returns True if abs(x-y) is smaller than tolerance element-wise, otherwise False. | 
 | |
| Checks whether the data type and the shape of corresponding elements from tuples x and y are the same. | 
 | |
| 逐元素比较两个输入Tensor是否相等。 | 
 | |
| Computes the number of the same elements of two tensors. | 
 | |
| 按元素比较输入参数 \(x,y\) 的值,输出结果为bool值。 | 
 | |
| 输入两个数据,逐元素比较第一个数据是否大于等于第二个数据。 | 
 | |
| Determines whether the targets are in the top k predictions. | 
 | |
| Determines which elements are finite for each position. | 
 | |
| Determines which elements are inf or -inf for each position | 
 | |
| Checks whether an object is an instance of a target type. | 
 | |
| 判断输入数据每个位置上的值是否是Nan。 | 
 | |
| Checks whether this type is a sub-class of another type. | 
 | |
| Computes the boolean value of \(x < y\) element-wise. | 
 | |
| 逐元素计算 \(x <= y\) 的bool值。 | 
 | |
| 计算输入Tensor的最大值。 | 
 | |
| Computes the minimum of input tensors element-wise. | 
 | |
| 计算两个Tensor是否不相等。 | 
 | |
| Checks whether the data type and shape of two tensors are the same. | 
 | |
| Finds values and indices of the k largest entries along the last dimension. | 
 | 
线性代数算子
| 接口名 | 概述 | 支持平台 | 
| 两个batch后的Tensor之间的矩阵乘法。 | 
 | |
| 返回输入Tensor与偏置Tensor之和。 | 
 | |
| Ger product of x1 and x2. | 
 | |
| 将矩阵 a 和矩阵 b 相乘。 | 
 | |
| 计算输入矩阵的逆矩阵,如果输入矩阵不可逆,将产生错误或者返回一个未知结果。 | 
 | 
Tensor操作算子
Tensor创建
| 接口名 | 概述 | 支持平台 | 
| 创建一个与输入数据类型和shape都相同的Tensor,元素值为对应数据类型能表达的最小值。 | 
 | |
| 创建一个主对角线上元素为1,其余元素为0的Tensor。 | 
 | |
| 创建一个指定shape的Tensor,并用指定值填充。 | 
 | |
| Returns a Tensor whose value is num evenly spaced in the interval start and stop (including start and stop), and the length of the output Tensor is num. | 
 | |
| 返回一个one-hot类型的Tensor。 | 
 | |
| 创建一个值全为1的Tensor。 | 
 | |
| 返回值为1的Tensor,shape和数据类型与输入相同。 | 
 | |
| 创建一个值全为0的Tensor。 | 
 | |
| 返回值为0的Tensor,其shape和数据类型与输入Tensor相同。 | 
 | 
随机生成算子
| 接口名 | 概述 | 支持平台 | 
| 根据概率密度函数分布生成随机正值浮点数x。 | 
 | |
| Returns a tensor sampled from the multinomial probability distribution located in the corresponding row of tensor input. | 
 | |
| Produces random non-negative integer values i, distributed according to discrete probability function: | 
 | |
| Generates random samples from a given categorical distribution tensor. | 
 | |
| Generates a random sample as index tensor with a mask tensor from a given tensor. | 
 | |
| Generates n random samples from 0 to n-1 without repeating. | 
 | |
| Generates random numbers according to the Laplace random number distribution (mean=0, lambda=1). | 
 | |
| Generates random numbers according to the standard Normal (or Gaussian) random number distribution. | 
 | |
| Produces random integer values i, uniformly distributed on the closed interval [minval, maxval), that is, distributed according to the discrete probability function: | 
 | |
| 产生随机的浮点数,均匀分布在[0,1)范围内。 | 
 | 
Array操作
| 接口名 | 概述 | 支持平台 | 
| Divides batch dimension with blocks and interleaves these blocks back into spatial dimensions. | 
 | |
| Divides batch dimension with blocks and interleaves these blocks back into spatial dimensions. | 
 | |
| 将输入shape广播到目标shape。 | 
 | |
| 转换输入Tensor的数据类型。 | 
 | |
| 在指定轴上拼接输入Tensor。 | 
 | |
| Computes the cumulative product of the tensor x along axis. | 
 | |
| 计算输入Tensor在指定轴上的累加和。 | 
 | |
| Returns the dimension index in the destination data format given in the source data format. | 
 | |
| Rearrange blocks of depth data into spatial dimensions. | 
 | |
| Returns the data type of the input tensor as mindspore.dtype. | 
 | |
| 与 TensorShape 相同, DynamicShape 将会被 TensorShape 替换,请使用 TensorShape 。 | Deprecated | |
| Adds an additional dimension to input_x at the given axis. | 
 | |
| Determines if the elements contain Not a Number(NaN), infinite or negative infinite. | 
 | |
| 返回输入Tensor在指定 axis 上 input_indices 索引对应的元素组成的切片。 | 
 | |
| 获取指定轴的元素。 | 
 | |
| 根据索引获取输入Tensor指定位置上的元素。 | 
 | |
| Returns a rank 1 histogram counting the number of entries in values that fall into every bin. | 
 | |
| 返回与输入具有相同shape和值的Tensor。 | 
 | |
| Adds tensor y to specified axis and indices of tensor x. | 
 | |
| Adds v into specified rows of x. | 
 | |
| Subtracts v into specified rows of x. | 
 | |
| Updates specified rows with values in v. | 
 | |
| Computes the inverse of an index permutation. | 
 | |
| 将掩码位置为True的位置填充指定的值。 | 
 | |
| 使用布尔掩码对输入进行选择得到一个新的一维Tensor。 | 
 | |
| 从给定的Tensor生成网格矩阵。 | 
 | |
| Concats tensor in the first dimension. | 
 | |
| Computes element-wise population count(a.k.a bitsum, bitcount). | 
 | |
| Returns the rank of a tensor. | 
 | |
| 基于给定的shape,对输入Tensor进行重新排列。 | 
 | |
| 对输入序列进行部分反转。 | 
 | |
| 对输入Tensor按指定维度反转。 | 
 | |
| 根据指定的索引将更新值散布到新Tensor上。 | 
 | |
| Returns the selected elements, either from input \(x\) or input \(y\), depending on the condition. | 
 | |
| Returns the shape of the input tensor. | 
 | |
| 返回一个Scalar,类型为整数,表示输入Tensor的大小,即Tensor中元素的总数。 | 
 | |
| 根据指定shape对输入Tensor进行切片。 | 
 | |
| 根据指定的轴对输入Tensor的元素进行排序。 | 
 | |
| SpaceToBatch is deprecated. | 弃用 | |
| Divides spatial dimensions into blocks and combines the block size with the original batch. | 
 | |
| Rearrange blocks of spatial data into depth. | 
 | |
| Returns a slice of input tensor based on the specified indices and axis. | 
 | |
| 根据指定的轴和分割数量对输入Tensor进行分割。 | 
 | |
| Splits the input tensor into num_split tensors along the given dimension. | 
 | |
| 返回删除指定 axis 中大小为1的维度后的Tensor。 | 
 | |
| 在指定轴上对输入Tensor序列进行堆叠。 | 
 | |
| 输入Tensor根据步长和索引进行切片提取。 | 
 | |
| 根据指定的更新值和输入索引,通过相加运算更新输入Tensor的值。 | 
 | |
| 根据指定的更新值和输入索引,通过最大值运算更新输入Tensor的值。 | 
 | |
| 根据指定的更新值和输入索引,通过最小值运算更新输入Tensor的值。 | 
 | |
| 根据指定的更新值和输入索引,通过减法运算更新输入Tensor的值。 | 
 | |
| 根据指定的更新值和输入索引,通过更新操作更新输入Tensor的值。 | 
 | |
| 返回输入Tensor的Shape。 | 
 | |
| 按照给定的次数复制输入Tensor。 | 
 | |
| 根据指定的排列对输入的Tensor进行数据重排。 | 
 | |
| Returns the unique elements of input tensor and also return a tensor containing the index of each value of input tensor corresponding to the output unique tensor. | 
 | |
| Returns unique elements and relative indexes in 1-D tensor, filled with padding num. | 
 | |
| Computes the maximum along segments of a tensor. | 
 | |
| Computes the minimum of a tensor along segments. | 
 | |
| Computes the product of a tensor along segments. | 
 | |
| Computes the sum of a tensor along segments. | 
 | |
| 根据指定轴对输入矩阵进行分解。 | 
 | 
类型转换
| 接口名 | 概述 | 支持平台 | 
| Casts the input scalar to another type. | 
 | |
| 将Scalar转换为 Tensor 。 | 
 | |
| 将Scalar转换为指定数据类型的 Tensor 。 | 
 | |
| 将tuple转换为Tensor。 | 
 | 
Parameter操作算子
| 接口名 | 概述 | 支持平台 | 
| Assigns Parameter with a value. | 
 | |
| Updates a Parameter by adding a value to it. | 
 | |
| Updates a Parameter by subtracting a value from it. | 
 | |
| 根据指定更新值和输入索引通过加法运算更新输入数据的值。 | 
 | |
| 根据指定更新值和输入索引通过除法运算更新输入数据的值。 | 
 | |
| 根据指定更新值和输入索引通过最大值运算更新输入数据的值。 | 
 | |
| 根据指定更新值和输入索引通过最小值运算更新输入数据的值。 | 
 | |
| 根据指定更新值和输入索引通过乘法运算更新输入数据的值。 | 
 | |
| 使用给定值通过加法运算和输入索引更新Tensor值。 | 
 | |
| 使用给定值通过减法运算和输入索引更新Tensor值。 | 
 | |
| 使用给定值以及输入索引更新输入数据的值。 | 
 | |
| 使用给定值通过加法操作和输入索引来更新Tensor值。 | 
 | |
| 使用给定更新值通过减法操作和输入索引来更新Tensor值。 | 
 | |
| 使用给定的更新值和输入索引更新输入Tensor的值。 | 
 | 
数据操作算子
| 接口名 | 概述 | 支持平台 | 
| 返回数据集队列中的下一个元素。 | 
 | 
通信算子
注意,以下列表中的接口需要先配置好通信环境变量。
针对Ascend设备,用户需要准备rank表,设置rank_id和device_id,详见 Ascend指导文档 。
针对GPU设备,用户需要准备host文件和mpi,详见 GPU指导文档 。
| 接口名 | 概述 | 支持平台 | 
| 在指定的通信组中汇聚Tensor。 | 
 | |
| 使用指定方式对通信组内的所有设备的Tensor数据进行规约操作,所有设备都得到相同的结果。 | 
 | |
| AlltoAll is a collective operation. | 
 | |
| 对输入数据整组广播。 | 
 | |
| NeighborExchange is a collective operation. | 
 | |
| NeighborExchangeV2 is a collective operation. | 
 | |
| Operation options for reducing tensors. | 
 | |
| Reduces and scatters tensors from the specified communication group. | 
 | 
调试算子
| 接口名 | 概述 | 支持平台 | 
| Outputs the tensor to protocol buffer through histogram summary operator. | 
 | |
| Outputs the image tensor to protocol buffer through image summary operator. | 
 | |
| Outputs a scalar to a protocol buffer through a scalar summary operator. | 
 | |
| Outputs a tensor to a protocol buffer through a tensor summary operator. | 
 | |
| 将输入Tensor或string进行打印输出。 | 
 | |
| Allocates a flag to store the overflow status. | 
 | |
| Clears the flag which stores the overflow status. | 
 | |
| Updates the flag which is the output tensor of NPUAllocFloatStatus with the latest overflow status. | 
 | 
稀疏算子
| 接口名 | 概述 | 支持平台 | 
| Multiplies sparse matrix A by dense matrix B. | 
 | |
| Converts a sparse representation into a dense tensor. | 
 | 
其他算子
| 接口名 | 概述 | 支持平台 | 
| Depend is used for processing dependency operations. | 
 | |
| 一个高阶函数,为输入函数生成梯度函数。 | 
 | |
| This operation is used as a tag to hook gradient in intermediate variables. | 
 | |
| 对输入序列做集合运算。 | 
 | |
| Attaches callback to the graph node that will be invoked on the node's gradient. | 
 | |
| Map will apply the set operation on input sequences. | 
 | |
| Generates overloaded functions. | 
 | |
| Makes a partial function instance. | 
 | 
算子信息注册
| Class for AiCPU operator information register. | |
| Class used for generating the registration information for the func parameter of  | |
| Ascend算子的dtype和format的多种组合。 | |
| Class for TBE operator information register. | |
| 通过Primitive对象或Primitive名称,获取虚拟实现函数。 | 
自定义算子
| Custom 算子是MindSpore自定义算子的统一接口。 |