# mindspore.ops.LRN

class mindspore.ops.LRN(depth_radius=5, bias=1.0, alpha=1.0, beta=0.5, norm_region='ACROSS_CHANNELS')[源代码]

Local Response Normalization.

$b_{c} = a_{c}\left(k + \frac{\alpha}{n} \sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}$

where the $$a_{c}$$ indicates the specific value of the pixel corresponding to c in feature map; where the $$n/2$$ indicates the depth_radius; where the $$k$$ indicates the bias; where the $$\alpha$$ indicates the alpha; where the $$\beta$$ indicates the beta.

Parameters
• depth_radius (int) – Half-width of the 1-D normalization window with the shape of 0-D. Default: 5.

• bias (float) – An offset (usually positive to avoid dividing by 0). Default: 1.0.

• alpha (float) – A scale factor, usually positive. Default: 1.0.

• beta (float) – An exponent. Default: 0.5.

• norm_region (str) – Specifies normalization region. Options: “ACROSS_CHANNELS”. Default: “ACROSS_CHANNELS”.

Inputs:
• x (Tensor) - A 4-D Tensor with float16 or float32 data type.

Outputs:

Tensor, with the same shape and data type as x.

Raises
Supported Platforms:

Ascend GPU

Examples

>>> x = Tensor(np.array([[[[0.1], [0.2]],
...                       [[0.3], [0.4]]]]), mindspore.float32)
>>> lrn = ops.LRN()
>>> output = lrn(x)
>>> print(output)
[[[[0.09534626]
[0.1825742 ]]
[[0.2860388 ]
[0.3651484 ]]]]