mindspore.dataset.text
此模块用于文本数据增强,包括 transforms 和 utils 两个子模块。
transforms 是一个高性能文本数据增强模块,支持常见的文本数据增强处理。
utils 提供了一些文本处理的工具方法。
在API示例中,常用的模块导入方法如下:
import mindspore.dataset as ds
from mindspore.dataset import text
常用数据处理术语说明如下:
- TensorOperation,所有C++实现的数据处理操作的基类。 
- TextTensorOperation,所有文本数据处理操作的基类,派生自TensorOperation。 
mindspore.dataset.text.transforms
| 接口名 | 概述 | 说明 | 
| 按照指定规则对输入的UTF-8编码字符串进行分词。 | Windows平台尚不支持 BasicTokenizer | |
| 使用Bert分词器对字符串进行分词。 | Windows平台尚不支持 BertTokenizer | |
| 将UTF-8编码字符串中的字符规范化为小写,相比  | Windows平台尚不支持 CaseFold | |
| 使用Jieba分词器对中文字符串进行分词。 | 必须保证隐式马尔科夫模型分词(HMMSEgment)和最大概率法分词(MPSegment)所使用的词典文件的完整性 | |
| 根据词表,将分词标记(token)映射到其索引值(id)。 | ||
| 从1-D的字符串生成N-gram。 | ||
| 对UTF-8编码的字符串进行规范化处理。 | Windows平台尚不支持 NormalizeUTF8 | |
| 使用用户自定义的分词器对输入字符串进行分词。 | ||
| 根据正则表达式对UTF-8编码格式的字符串内容进行正则替换。 | Windows平台尚不支持 RegexReplace | |
| 根据正则表达式对字符串进行分词。 | Windows平台尚不支持 RegexTokenizer | |
| 使用SentencePiece分词器对字符串进行分词。 | ||
| 在输入数据的某个维度上进行滑窗切分处理,当前仅支持处理1-D的Tensor。 | ||
| 将字符串的每个元素转换为数字。 | ||
| 截断一对 1-D 字符串的内容,使其总长度小于给定长度。 | ||
| 使用Unicode分词器将字符串分词为Unicode字符。 | ||
| 使用UnicodeScript分词器对UTF-8编码的字符串进行分词。 | Windows平台尚不支持 UnicodeScriptTokenizer | |
| 基于ICU4C定义的空白字符(' ', '\\t', '\\r', '\\n')对输入的UTF-8字符串进行分词。 | Windows平台尚不支持 WhitespaceTokenizer | |
| 将输入的字符串切分为子词。 | 
mindspore.dataset.text.utils
| 接口名 | 概述 | 说明 | 
| Unicode规范化模式 枚举类。 | ||
| SentencePiece分词方法的枚举类。 | ||
| 用于执行分词的SentencePiece对象。 | ||
| 
 | ||
| 
 | ||
| 基于 encoding 字符集对每个元素进行解码,借此将 bytes 的NumPy数组转换为 string 的数组。 | ||
| 基于 encoding 字符集对每个元素进行编码,将 string 的NumPy数组转换为 bytes 的数组。 | ||
| 用于查找单词的Vocab对象。 |