mindspore.dataset.vision.py_transforms.UniformAugment
- class mindspore.dataset.vision.py_transforms.UniformAugment(transforms, num_ops=2)[source]
- Uniformly select a number of transformations from a sequence and apply them sequentially and randomly, which means that there is a chance that a chosen transformation will not be applied. - All transformations in the sequence require the output type to be the same as the input. Thus, the latter one can deal with the output of the previous one. - Parameters
- transforms (sequence) – Sequence of transformations to be chosen from. 
- num_ops (int, optional) – Number of transformations to be sequentially and randomly applied (default=2). 
 
- Raises
- TypeError – If transforms is not of type ImageTensorOperation. 
- TypeError – If num_ops is not of type integer. 
- ValueError – If num_ops is not positive. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms = [py_vision.CenterCrop(64), ... py_vision.RandomColor(), ... py_vision.RandomSharpness(), ... py_vision.RandomRotation(30)] >>> transforms_list = Compose([py_vision.Decode(), ... py_vision.UniformAugment(transforms), ... py_vision.ToTensor()]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")