mindspore.dataset.vision.py_transforms.RandomErasing
- class mindspore.dataset.vision.py_transforms.RandomErasing(prob=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False, max_attempts=10)[source]
- Randomly erase the pixels within a random selected rectangle region with a given probability. - See Zhun Zhong et al. ‘Random Erasing Data Augmentation’ 2017 on https://arxiv.org/pdf/1708.04896.pdf - Parameters
- prob (float, optional) – Probability of the image being randomly erased (default=0.5). 
- scale (sequence of floats, optional) – Range of the relative erase area to the original image (default=(0.02, 0.33)). 
- ratio (sequence, optional) – Range of aspect ratio of the erased area (default=(0.3, 3.3)). 
- value (Union[int, sequence, str]) – Erasing value (default=0). If value is a single integer, it is used to erase all pixels. If value is a sequence of length 3, it is used to erase R, G, B channels respectively. If value is a string of ‘random’, each pixel will be erased with a random value obtained from a standard normal distribution. 
- inplace (bool, optional) – Whether to apply this transformation inplace (default=False). 
- max_attempts (int, optional) – The maximum number of attempts to propose a valid area to be erased (default=10). If exceeded, return the original image. 
 
- Raises
- TypeError – If prob is not of type float. 
- TypeError – If scale is not of type sequence. 
- TypeError – If ratio is not of type sequence. 
- TypeError – If value is not of type integer, sequence or string. 
- TypeError – If inplace is not of type boolean. 
- TypeError – If max_attempts is not of type integer. 
- ValueError – If prob is not in range [0, 1]. 
- ValueError – If scale is negative. 
- ValueError – If ratio is negative. 
- ValueError – If value is not in range [0, 255]. 
- ValueError – If max_attempts is not positive. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms_list = Compose([py_vision.Decode(), ... py_vision.ToTensor(), ... py_vision.RandomErasing(value='random')]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")