mindspore.dataset.vision.py_transforms.RandomResizedCrop
- class mindspore.dataset.vision.py_transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=Inter.BILINEAR, max_attempts=10)[source]
- Randomly crop the image and resize it to a given size. - Parameters
- size (Union[int, sequence]) – The size of the output image. If size is an integer, a square of size (size, size) is returned. If size is a sequence of length 2, it should be in shape of (height, width). 
- scale (Union[list, tuple], optional) – Respective size range of the original image to be cropped in shape of (min, max) (default=(0.08, 1.0)). 
- ratio (Union[list, tuple], optional) – Aspect ratio range to be cropped in shape of (min, max) (default=(3./4., 4./3.)). 
- interpolation (Inter, optional) – - Image interpolation mode (default=Inter.BILINEAR). It can be any of [Inter.NEAREST, Inter.ANTIALIAS, Inter.BILINEAR, Inter.BICUBIC]. - Inter.NEAREST, nearest-neighbor interpolation. 
- Inter.ANTIALIAS, antialias interpolation. 
- Inter.BILINEAR, bilinear interpolation. 
- Inter.BICUBIC, bicubic interpolation. 
 
- max_attempts (int, optional) – The maximum number of attempts to propose a valid crop area (default=10). If exceeded, fall back to use center crop instead. 
 
- Raises
- TypeError – If size is not of type integer or sequence of integer. 
- TypeError – If scale is not of type tuple. 
- TypeError – If ratio is not of type tuple. 
- TypeError – If interpolation is not of type Inter. 
- TypeError – If max_attempts is not of type integer. 
- ValueError – If size is not positive. 
- ValueError – If scale is negative. 
- ValueError – If ratio is negative. 
- ValueError – If max_attempts is not positive. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms_list = Compose([py_vision.Decode(), ... py_vision.RandomResizedCrop(224), ... py_vision.ToTensor()]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")