mindspore
Tensor
| Tensor is a data structure that stores an n-dimensional array. | |
| A sparse representation of a set of tensor slices at given indices. | |
| A sparse representation of a set of nonzero elements from a tensor at given indices. | 
Parameter
| An object holding weights of cells, after initialized Parameter is a subtype of Tensor. | |
| Class for storing tuple of parameters. | 
DataType
- class mindspore.dtype
- Create a data type object of MindSpore. - The actual path of - dtypeis- /mindspore/common/dtype.py. Run the following command to import the package:- from mindspore import dtype as mstype - Numeric Type - Currently, MindSpore supports - Inttype,- Uinttype and- Floattype. The following table lists the details.- Definition - Description - mindspore.int8,- mindspore.byte- 8-bit integer - mindspore.int16,- mindspore.short- 16-bit integer - mindspore.int32,- mindspore.intc- 32-bit integer - mindspore.int64,- mindspore.intp- 64-bit integer - mindspore.uint8,- mindspore.ubyte- unsigned 8-bit integer - mindspore.uint16,- mindspore.ushort- unsigned 16-bit integer - mindspore.uint32,- mindspore.uintc- unsigned 32-bit integer - mindspore.uint64,- mindspore.uintp- unsigned 64-bit integer - mindspore.float16,- mindspore.half- 16-bit floating-point number - mindspore.float32,- mindspore.single- 32-bit floating-point number - mindspore.float64,- mindspore.double- 64-bit floating-point number - mindspore.complex64- 64-bit complex number - mindspore.complex128- 128-bit complex number 
- Other Type - For other defined types, see the following table. - Type - Description - tensor- MindSpore’s - tensortype. Data format uses NCHW. For details, see tensor.- bool_- Boolean - Trueor- False.- int_- Integer scalar. - uint- Unsigned integer scalar. - float_- Floating-point scalar. - complex- Complex scalar. - number- Number, including - int_,- uint,- float_,- complexand- bool_.- list_- List constructed by - tensor, such as- List[T0,T1,...,Tn], where the element- Tican be of different types.- tuple_- Tuple constructed by - tensor, such as- Tuple[T0,T1,...,Tn], where the element- Tican be of different types.- function- Function. Return in two ways, when function is not None, returns Func directly, the other returns Func(args: List[T0,T1,…,Tn], retval: T) when function is None. - type_type- Type definition of type. - type_none- No matching return type, corresponding to the - type(None)in Python.- symbolic_key- The value of a variable is used as a key of the variable in - env_type.- env_type- Used to store the gradient of the free variable of a function, where the key is the - symbolic_keyof the free variable’s node and the value is the gradient.
- Tree Topology - The relationships of the above types are as follows: - └─────── number │ ├─── bool_ │ ├─── int_ │ │ ├─── int8, byte │ │ ├─── int16, short │ │ ├─── int32, intc │ │ └─── int64, intp │ ├─── uint │ │ ├─── uint8, ubyte │ │ ├─── uint16, ushort │ │ ├─── uint32, uintc │ │ └─── uint64, uintp │ ├─── float_ │ │ ├─── float16 │ │ ├─── float32 │ │ └─── float64 │ └─── complex │ ├─── complex64 │ └─── complex128 ├─── tensor │ ├─── Array[Float32] │ └─── ... ├─── list_ │ ├─── List[Int32,Float32] │ └─── ... ├─── tuple_ │ ├─── Tuple[Int32,Float32] │ └─── ... ├─── function │ ├─── Func │ ├─── Func[(Int32, Float32), Int32] │ └─── ... ├─── type_type ├─── type_none ├─── symbolic_key └─── env_type
 
| Convert MindSpore dtype to numpy data type. | |
| Determine whether type_ is a subclass of dtype. | |
| Convert MindSpore dtype to python data type. | |
| Convert python type to MindSpore type. | |
| Get the MindSpore data type, which corresponds to python type or variable. | 
Seed
| Set global seed. | |
| Get global seed. | 
Model
| High-Level API for training or inference. | 
Dataset Helper
| DatasetHelper is a class to process the MindData dataset and provides the information of dataset. | |
| Connect the network with dataset in dataset_helper. | 
Loss Scale Manager
| Loss scale (Magnification factor of gradients when mix precision is used) manager abstract class. | |
| Loss scale(Magnification factor of gradients when mix precision is used) manager with a fixed loss scale value, inherits from  | |
| Loss scale(Magnification factor of gradients when mix precision is used) manager with loss scale dynamically adjusted, inherits from  | 
Serialization
| Save checkpoint to a specified file. | |
| Load checkpoint info from a specified file. | |
| Load parameters into network. | |
| Export the MindSpore network into an offline model in the specified format. | |
| Load MindIR. | |
| Parse saved data generated by mindspore.ops.Print. | |
| Build strategy of every parameter in network. | |
| Merge parameter slices into one parameter. | |
| Load checkpoint into net for distributed predication. | |
| Get the status of asynchronous save checkpoint thread. | |
| Build rank list, the checkpoint of ranks in the rank list has the same contents with the local rank who saves the group_info_file_name. | 
JIT
| Create a callable MindSpore graph from a Python function. | 
Log
| Get the logger level. | |
| Get logger configurations. | 
Automatic Mixed Precision
| Build the mixed precision training cell automatically. | 
Installation Verification
| Provide a convenient API to check if the installation is successful or failed. | 
Debugging
| Enable or disable dump for the target and its contents. | 
Memory Recycle
| Recycle memory used by MindSpore. |