mindspore.dataset.vision.py_transforms.Pad
- class mindspore.dataset.vision.py_transforms.Pad(padding, fill_value=0, padding_mode=Border.CONSTANT)[source]
- Pad the input image on all sides with the given padding parameters. - Parameters
- padding (Union[int, sequence]) – The number of pixels padded on the image borders. If a single number is provided, pad all borders with this value. If a sequence of length 2 is provided, pad the left and top with the first value and the right and bottom with the second value. If a sequence of length 4 is provided, pad the left, top, right and bottom respectively. 
- fill_value (Union[int, tuple], optional) – Pixel fill value to pad the borders, only valid when padding_mode is Border.CONSTANT (default=0). If fill_value is an integer, it is used for all RGB channels. If fill_value is a tuple of length 3, it is used to fill R, G, B channels respectively. 
- padding_mode (Border, optional) – - The method of padding (default=Border.CONSTANT). It can be any of [Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC]. - Border.CONSTANT, pads with a constant value. 
- Border.EDGE, pads with the last value at the edge of the image. 
- Border.REFLECT, pads with reflection of the image omitting the last value on the edge. 
- Border.SYMMETRIC, pads with reflection of the image repeating the last value on the edge. 
 
 
- Raises
- TypeError – If padding is not of type integer or sequence of integer. 
- TypeError – If fill_value is not of type integer or tuple of integer. 
- TypeError – If padding_mode is not of type Border. 
- ValueError – If padding is negative. 
- ValueError – If fill_value is not in range [0, 255]. 
- RuntimeError – If given tensor shape is not <H, W> or <H, W, C>. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms_list = Compose([py_vision.Decode(), ... # adds 10 pixels (default black) to each border of the image ... py_vision.Pad(padding=10), ... py_vision.ToTensor()]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")