mindspore.dataset.vision.py_transforms.Normalize
- class mindspore.dataset.vision.py_transforms.Normalize(mean, std)[source]
- Normalize the input numpy.ndarray image of shape (C, H, W) with the specified mean and standard deviation. \[output_{c} = \frac{input_{c} - mean_{c}}{std_{c}}\]- Note - The values of the input image need to be in the range [0.0, 1.0]. If not so, call ToTensor first. - Parameters
- mean (Union[float, sequence]) – list or tuple of mean values for each channel, arranged in channel order. The values must be in the range [0.0, 1.0]. If a single float is provided, it will be filled to the same length as the channel. 
- std (Union[float, sequence]) – list or tuple of standard deviation values for each channel, arranged in channel order. The values must be in the range (0.0, 1.0]. If a single float is provided, it will be filled to the same length as the channel. 
 
- Raises
- TypeError – If the input is not numpy.ndarray. 
- TypeError – If the dimension of input is not 3. 
- NotImplementedError – If the dtype of input is a subdtype of np.integer. 
- ValueError – If the lengths of the mean and std are not equal. 
- ValueError – If the length of the mean or std is neither equal to the channel length nor 1. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> from mindspore.dataset.transforms.py_transforms import Compose >>> transforms_list = Compose([py_vision.Decode(), ... py_vision.RandomHorizontalFlip(0.5), ... py_vision.ToTensor(), ... py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262))]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")