mindspore.ops.orgqr
- mindspore.ops.orgqr(input, input2)[source]
Compute the first \(N\) columns of a product of Householder matrices.
Usually used to calculate the explicit representation of the orthogonal matrix \(Q\) returned by
mindspore.ops.Geqrf
.Take the case of input without batch dimension as an example: Suppose input input is a matrix of size \((M, N)\) after householder transformation. When the diagonal of input is set to 1, every column of lower triangular in input is denoted as \(w_j\) for \(j\) for \(j=1, \ldots, M\), this function returns the first \(N\) columns of the matrix
\[H_{1} H_{2} \ldots H_{k} \quad \text { with } \quad H_{j}=\mathrm{I}_{M}-\tau_{j} w_{j} w_{j}^{\mathrm{H}}\]where \(\mathrm{I}_{M}\) is the \(M\)-dimensional identity matrix. And when \(w\) is complex, \(w^{\mathrm{H}}\) is the conjugate transpose, otherwise the transpose. The output matrix is the same size as the input matrix input. \(tau\) is corresponding to input2.
- Parameters
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> input = mindspore.tensor([[-2.0, -1.0], [1.0, 2.0]]) >>> y, tau = mindspore.ops.geqrf(input) >>> mindspore.ops.orgqr(y, tau) Tensor(shape=[2, 2], dtype=Float32, value= [[-8.94427061e-01, 4.47213590e-01], [ 4.47213590e-01, 8.94427180e-01]])