mindspore.ops.addbmm
- mindspore.ops.addbmm(input, batch1, batch2, *, beta=1, alpha=1)[source]
Apply batch matrix multiplication to batch1 and batch2, with a reduced add step and add input to the result.
Note
batch1 and batch2 must be 3-D tensors each containing the same number of matrices.
When batch1 is a \((C, W, T)\) tensor and batch2 is a \((C, T, H)\) tensor, input must be broadcastable with \((W, H)\) tensor, and out will be a \((W, H)\) tensor.
If beta is 0, then input will be ignored.
\[output = \beta input + \alpha (\sum_{i=0}^{b-1} {batch1_i @ batch2_i})\]- Parameters
- Keyword Arguments
- Returns
Tensor
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> m = mindspore.ops.ones((3, 3)) >>> arr1 = mindspore.tensor([[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]) >>> arr2 = mindspore.tensor([[5., 4., 3.], [2., 1., 0.], [8., 7., 6.]]) >>> output = mindspore.ops.addbmm(m, arr1, arr2) >>> print(output) [[172. 136. 100.] [172. 136. 100.] [172. 136. 100.]]