mindspore.nn.warmup_lr
- mindspore.nn.warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch)[source]
- Gets learning rate warming up. - For the i-th step, the formula of computing warmup_learning_rate[i] is: \[warmup\_learning\_rate[i] = learning\_rate * tmp\_epoch / warmup\_epoch\]- Where \(tmp\_epoch=min(current\_epoch, warmup\_epoch),\ current\_epoch=floor(\frac{i}{step\_per\_epoch})\) - Parameters
- Returns
- list[float]. The size of list is total_step. 
 - Examples - >>> import mindspore.nn as nn >>> >>> learning_rate = 0.1 >>> total_step = 6 >>> step_per_epoch = 2 >>> warmup_epoch = 2 >>> output = nn.warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch) >>> print(output) [0.0, 0.0, 0.05, 0.05, 0.1, 0.1]