mindspore.nn.polynomial_decay_lr
- mindspore.nn.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power, update_decay_epoch=False)[source]
- Calculates learning rate base on polynomial decay function. - For the i-th step, the formula of computing decayed_learning_rate[i] is: \[decayed\_learning\_rate[i] = (learning\_rate - end\_learning\_rate) * (1 - tmp\_epoch / tmp\_decay\_epoch)^{power} + end\_learning\_rate\]- Where: \[tmp\_epoch = min(current\_epoch, decay\_epoch)\]\[current\_epoch=floor(\frac{i}{step\_per\_epoch})\]\[tmp\_decay\_epoch = decay\_epoch\]- If update_decay_epoch is true, update the value of tmp_decay_epoch every epoch. The formula is: \[tmp\_decay\_epoch = decay\_epoch * ceil(current\_epoch / decay\_epoch)\]- Parameters
- learning_rate (float) – The initial value of learning rate. 
- end_learning_rate (float) – The end value of learning rate. 
- total_step (int) – The total number of steps. 
- step_per_epoch (int) – The number of steps in per epoch. 
- decay_epoch (int) – A value used to calculate decayed learning rate. 
- power (float) – A value used to calculate decayed learning rate. This parameter must be greater than 0. 
- update_decay_epoch (bool) – If true, update decay_epoch. Default: False. 
 
- Returns
- list[float]. The size of list is total_step. 
 - Examples - >>> import mindspore.nn as nn >>> >>> learning_rate = 0.1 >>> end_learning_rate = 0.01 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 2 >>> power = 0.5 >>> r = nn.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power) >>> print(r) [0.1, 0.1, 0.07363961030678928, 0.07363961030678928, 0.01, 0.01]