mindspore.nn.exponential_decay_lr
- mindspore.nn.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False)[source]
- Calculates learning rate base on exponential decay function. - For the i-th step, the formula of computing decayed_learning_rate[i] is: \[decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{\frac{current\_epoch}{decay\_epoch}}\]- Where \(current\_epoch=floor(\frac{i}{step\_per\_epoch})\). - Parameters
- learning_rate (float) – The initial value of learning rate. 
- decay_rate (float) – The decay rate. 
- total_step (int) – The total number of steps. 
- step_per_epoch (int) – The number of steps in per epoch. 
- decay_epoch (int) – A value used to calculate decayed learning rate. 
- is_stair (bool) – If true, learning rate is decayed once every decay_epoch times. Default: False. 
 
- Returns
- list[float]. The size of list is total_step. 
 - Examples - >>> import mindspore.nn as nn >>> >>> learning_rate = 0.1 >>> decay_rate = 0.9 >>> total_step = 6 >>> step_per_epoch = 2 >>> decay_epoch = 1 >>> output = nn.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch) >>> print(output) [0.1, 0.1, 0.09000000000000001, 0.09000000000000001, 0.08100000000000002, 0.08100000000000002]