mindscience.data.Tetrahedron

class mindscience.data.Tetrahedron(name, vertices, boundary_type='uniform', dtype=numpy.float32, sampling_config=None)[source]

Definition of tetrahedron object.

Parameters
  • name (str) – Name of the tetrahedron.

  • vertices (numpy.ndarray) – Vertices of the tetrahedron.

  • boundary_type (str) –

    This can be 'uniform' or 'unweighted'. Default: 'uniform'.

    • 'uniform', the expected number of samples in each boundary is proportional to the area (length) of the boundary.

    • 'unweighted', the expected number of samples in each boundary is the same.

  • dtype (numpy.dtype) – Data type of sampled point data type. Default: numpy.float32.

  • sampling_config (SamplingConfig) – Sampling configuration. Default: None.

Examples

>>> import numpy as np
>>> from mindscience.data import generate_sampling_config, Tetrahedron
>>> tetrahedron_mesh = dict({'domain': dict({'random_sampling': True, 'size': 300}),
...                          'BC': dict({'random_sampling': True, 'size': 300, 'with_normal': False,}),})
>>> vertices = np.array([[0., .1, 0.], [.9, .2, .1], [.5, .6, 0.1], [.6, .5, .8]])
>>> tetrahedron = Tetrahedron("tetrahedron", vertices,
...                           sampling_config=generate_sampling_config(tetrahedron_mesh))
>>> domain = tetrahedron.sampling(geom_type="domain")
>>> bc = tetrahedron.sampling(geom_type="bc")
>>> print(domain.shape)
(300, 2)