mindscience.data.Pentagon
- class mindscience.data.Pentagon(name, vertices, boundary_type='uniform', dtype=numpy.float32, sampling_config=None)[source]
Definition of pentagon object.
- Parameters
name (str) – Name of the pentagon.
vertices (numpy.ndarray) – Vertices of the pentagon in an anti-clockwise order.
boundary_type (str) –
This can be
'uniform'or'unweighted'. Default:'uniform'.'uniform', the expected number of samples in each boundary is proportional to the area (length) of the boundary.'unweighted', the expected number of samples in each boundary is the same.
dtype (numpy.dtype) – Data type of sampled point data type. Default:
numpy.float32.sampling_config (SamplingConfig) – Sampling configuration. Default:
None.
Examples
>>> from mindscience.data import generate_sampling_config, Pentagon >>> pentagon_mesh = dict({'domain': dict({'random_sampling': True, 'size': 300}), ... 'BC': dict({'random_sampling': True, 'size': 300, 'with_normal': False,}),}) >>> vertices = np.array([[0., .1], [.5, .1], [.9, .2], [.7, .6], [.2, .5]]) >>> pentagon = Pentagon("pentagon", vertices, ... sampling_config=generate_sampling_config(pentagon_mesh)) >>> domain = pentagon.sampling(geom_type="domain") >>> bc = pentagon.sampling(geom_type="bc") >>> print(domain.shape) (300, 2)