mindscience.data.FixedPoint
- class mindscience.data.FixedPoint(name, coord, dtype=numpy.float32, sampling_config=None)[source]
Definition of fixed point object.
- Parameters
name (str) – Name of the fixed point.
coord (Union[int, float, tuple, list, numpy.ndarray]) – Coordinate of the fixed point. If the parameter type is tuple or list, each element should be of type int or float.
dtype (numpy.dtype) – Data type of sampled point data type. Default:
numpy.float32.sampling_config (SamplingConfig) – Sampling configuration. Default:
None.
Examples
>>> from mindscience.data import generate_sampling_config, FixedPoint >>> hypercube_random = dict({ ... 'domain': dict({ ... 'random_sampling': True, ... 'size': 1, ... 'sampler': 'uniform' ... }) ... }) >>> sampling_config = generate_sampling_config(hypercube_random) >>> point = FixedPoint("FixedPoint", [-1, 2, 1], sampling_config=sampling_config) >>> domain = point.sampling(geom_type="domain") >>> print(domain.shape) (1, 3)
- sampling(geom_type='domain')[source]
Sampling points.
- Parameters
geom_type (str) – Geometry type, which supports
'domain'and'BC'. Default:'domain'.- Returns
Numpy.ndarray, 2D numpy array with or without boundary normal vectors.
- Raises
KeyError – If geom_type is
'domain'butself.sampling_config.domainisNone.KeyError – If geom_type is
'BC'butself.sampling_config.bcisNone.ValueError – If geom_type is neither
'BC'nor'domain'.