mindspore.set_context
- mindspore.set_context(**kwargs)[source]
Set context for running environment, this interface will be deprecated in future versions, and its parameter-related functionalities will be provided through new APIs.
- Parameters
mode (int) – GRAPH_MODE(0) or PYNATIVE_MODE(1). Default
PYNATIVE_MODE
.device_id (int) – ID of the target device. Default
0
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.set_device()
instead.device_target (str) – The target device to run, support
"Ascend"
,"GPU"
, and"CPU"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.set_device()
instead.deterministic (str) – Deterministic computation of operators. Default
"OFF"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.set_deterministic()
instead.max_call_depth (int) – The maximum depth of function call. Default
1000
. This parameter will be deprecated and removed in a future version. Please use the apimindspore.set_recursion_limit()
instead.variable_memory_max_size (str) – This parameter will be deprecated and removed in future versions. Please use the api
mindspore.runtime.set_memory()
instead.mempool_block_size (str) – Set the size of the memory pool block for devices. Default
"1GB"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.runtime.set_memory()
instead.memory_optimize_level (str) – The memory optimize level. Default
"O0"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.runtime.set_memory()
instead.max_device_memory (str) – Set the maximum memory available for devices. Default
"1024GB"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.runtime.set_memory()
instead.pynative_synchronize (bool) – Whether to enable synchronous execution of the device in PyNative mode. Default
False
. This parameter will be deprecated and removed in future versions.Please use the apimindspore.runtime.launch_blocking()
instead.compile_cache_path (str) – Path to save the compile cache. Default
"."
. This parameter will be deprecated and removed in a future version. Please use the environment variable MS_COMPILER_CACHE_PATH instead.inter_op_parallel_num (int) – The thread number of op parallel at the same time. Default
0
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.runtime.dispatch_threads_num()
instead.memory_offload (str) – Whether to enable the memory offload function. Default
"OFF"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.nn.Cell.offload()
instead.disable_format_transform (bool) – Whether to disable the automatic format transform function from NCHW to NHWC. Default
False
. This parameter will be deprecated and removed in future versions. Please use the related parameter ofmindspore.jit()
instead.jit_syntax_level (int) – Set JIT syntax support level. Default
LAX
. This parameter is deprecated and removed in future versions. Please use the related parameter ofmindspore.jit()
instead.jit_config (dict) – Set the global jit config for compile. This parameter is deprecated and removed in future versions. Please use the related parameter of
mindspore.jit()
instead.exec_order (str) – The sorting method for operator execution. This parameter is deprecated and removed in future versions. Please use the related parameter of
mindspore.jit()
instead.op_timeout (int) – Set the maximum duration of executing an operator in seconds. Default
900
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.ascend.op_debug.execute_timeout()
instead.aoe_tune_mode (str) – AOE tuning mode. This parameter will be deprecated and removed in future versions. Please use the api
mindspore.device_context.ascend.op_tuning.aoe_tune_mode()
instead.aoe_config (dict) – AOE-specific parameters. This parameter will be deprecated and removed in future versions. Please use the api
mindspore.device_context.ascend.op_tuning.aoe_job_type()
instead.runtime_num_threads (int) – The thread pool number of cpu kernel used in runtime. Default
30
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.cpu.op_tuning.threads_num()
instead.save_graphs (bool or int) – Whether to save intermediate compilation graphs. Default
0
. This parameter will be deprecated and removed in a future version. Please use the environment variable MS_DEV_SAVE_GRAPHS instead.save_graphs_path (str) – Path to save graphs. Default
"."
. This parameter will be deprecated and removed in a future version. Please use the environment variable MS_DEV_SAVE_GRAPHS_PATH instead.precompile_only (bool) – Whether to only precompile the network. Default
False
. This parameter will be deprecated and removed in a future version. Please use the environment variable MS_DEV_PRECOMPILE_ONLY instead.enable_compile_cache (bool) – Whether to save or load the compiled cache of the graph. Default
False
. This is an experimental prototype that is subject to change and/or deletion. This parameter will be deprecated and removed in a future version. Please use the environment variable MS_COMPILER_CACHE_ENABLE instead.ascend_config (dict) –
Set the parameters specific to Ascend hardware platform.
precision_mode (str): Mixed precision mode setting. Default
"force_fp16"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.ascend.op_precision.precision_mode()
instead.jit_compile (bool): Whether to select online compilation. This parameter will be deprecated and removed in future versions. Please use the api
mindspore.device_context.ascend.op_tuning.op_compile()
instead.matmul_allow_hf32 (bool): Whether to convert FP32 to HF32 for Matmul operators. Default
False
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.ascend.op_precision.matmul_allow_hf32()
instead.conv_allow_hf32 (bool): Whether to convert FP32 to HF32 for Conv operators. Default
True
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.ascend.op_precision.conv_allow_hf32()
instead.op_precision_mode (str): Path to config file of op precision mode. This parameter will be deprecated and removed in future versions. Please use the api
mindspore.device_context.ascend.op_precision.op_precision_mode()
instead.op_debug_option (str): Enable debugging options for Ascend operators. This parameter will be deprecated and removed in future versions. Please use the api
mindspore.device_context.ascend.op_debug.debug_option()
instead.ge_options (dict): Set options for CANN. This parameter will be deprecated and removed in future versions. Please use the related parameter of
mindspore.jit()
instead.atomic_clean_policy (int): The policy for cleaning memory occupied by atomic operators in the network. Default
1
represents that memory is not cleaned centrally,0
represents that memory is cleaned centrally. This parameter will be deprecated and removed in future versions. Please use the related parameter ofmindspore.jit()
instead.exception_dump (str): Enable Ascend operator exception dump. Default
"2"
. This parameter has been deprecated and removed. Please use the apimindspore.device_context.ascend.op_debug.aclinit_config()
instead.host_scheduling_max_threshold(int): The max threshold to control whether the dynamic shape process is used when run the static graph. Default
0
. This parameter will be deprecated and removed in future versions. Please use the related parameter ofmindspore.jit()
instead.parallel_speed_up_json_path(Union[str, None]): The path to the parallel speed up json file. This parameter will be deprecated and removed in future versions. Please use the api
mindspore.parallel.auto_parallel.AutoParallel.transformer_opt()
instead.hccl_watchdog (bool): Enable a thread to monitor the failure of collective communication. Default
True
.
gpu_config (dict) –
Set the parameters specific to gpu hardware platform. It is not set by default.
conv_fprop_algo (str): Specifies convolution forward algorithm. Default
"normal"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.gpu.op_tuning.conv_fprop_algo()
instead.conv_dgrad_algo (str): Specifies convolution data grad algorithm. Default
"normal"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.gpu.op_tuning.conv_dgrad_algo()
instead.conv_wgrad_algo (str): Specifies convolution filter grad algorithm. Default
"normal"
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.gpu.op_tuning.conv_wgrad_algo()
instead.conv_allow_tf32 (bool): Controls to allow Tensor core TF32 computation on CUDNN. Default
True
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.gpu.op_precision.conv_allow_tf32()
instead.matmul_allow_tf32 (bool): Controls to allow Tensor core TF32 computation on CUBLAS. Default
False
. This parameter will be deprecated and removed in future versions. Please use the apimindspore.device_context.gpu.op_precision.matmul_allow_tf32()
instead.
print_file_path (str) – This parameter will be deprecated and removed in future versions.
env_config_path (str) – This parameter will be deprecated and removed in future versions.
debug_level (int) – This parameter will be deprecated and removed in future versions.
reserve_class_name_in_scope (bool) – This parameter will be deprecated and removed in future versions.
check_bprop (bool) – This parameter will be deprecated and removed in future versions.
enable_reduce_precision (bool) – This parameter will be deprecated and removed in a future versions.
grad_for_scalar (bool) – This parameter will be deprecated and removed in future versions.
support_binary (bool) – Whether to support run .pyc or .so in graph mode.
Examples
>>> import mindspore as ms >>> ms.set_context(mode=ms.PYNATIVE_MODE) >>> ms.set_context(precompile_only=True) >>> ms.set_context(device_target="Ascend") >>> ms.set_context(device_id=0) >>> ms.set_context(save_graphs=True, save_graphs_path="./model.ms") >>> ms.set_context(enable_reduce_precision=True) >>> ms.set_context(reserve_class_name_in_scope=True) >>> ms.set_context(variable_memory_max_size="6GB") >>> ms.set_context(aoe_tune_mode="online") >>> ms.set_context(aoe_config={"job_type": "2"}) >>> ms.set_context(check_bprop=True) >>> ms.set_context(max_device_memory="3.5GB") >>> ms.set_context(mempool_block_size="1GB") >>> ms.set_context(print_file_path="print.pb") >>> ms.set_context(max_call_depth=80) >>> ms.set_context(env_config_path="./env_config.json") >>> ms.set_context(grad_for_scalar=True) >>> ms.set_context(enable_compile_cache=True, compile_cache_path="./cache.ms") >>> ms.set_context(pynative_synchronize=True) >>> ms.set_context(runtime_num_threads=10) >>> ms.set_context(inter_op_parallel_num=4) >>> ms.set_context(disable_format_transform=True) >>> ms.set_context(memory_optimize_level='O0') >>> ms.set_context(memory_offload='ON') >>> ms.set_context(deterministic='ON') >>> ms.set_context(ascend_config={"precision_mode": "force_fp16", "jit_compile": True, ... "atomic_clean_policy": 1, "op_precision_mode": "./op_precision_config_file", ... "op_debug_option": "oom", ... "ge_options": {"global": {"ge.opSelectImplmode": "high_precision"}, ... "session": {"ge.exec.atomicCleanPolicy": "0"}}}) >>> ms.set_context(jit_syntax_level=ms.STRICT) >>> ms.set_context(debug_level=ms.context.DEBUG) >>> ms.set_context(gpu_config={"conv_fprop_algo": "performance", "conv_allow_tf32": True, ... "matmul_allow_tf32": True}) >>> ms.set_context(jit_config={"jit_level": "O0"}) >>> ms.set_context(exec_order="bfs")