mindspore.DatasetHelper
- class mindspore.DatasetHelper(dataset, dataset_sink_mode=True, sink_size=- 1, epoch_num=1)[source]
- DatasetHelper is a class to process the MindData dataset and provides the information of dataset. - According to different contexts, change the iterations of dataset and use the same iteration for loop in different contexts. - Note - The iteration of DatasetHelper will provide one epoch data. - Parameters
- dataset (Dataset) – The dataset iterator. The dataset can be generated by dataset generator API in - mindspore.dataset, such as- mindspore.dataset.ImageFolderDataset.
- dataset_sink_mode (bool) – If the value is True, GetNext is employed to fetch the data at device through the dataset pipeline, otherwise fetch the data at host by iterating through the dataset. Default: True. 
- sink_size (int) – Control the amount of data in each sink. If sink_size=-1, sink the complete dataset for each epoch. If sink_size>0, sink sink_size data for each epoch. Default: -1. 
- epoch_num (int) – The number of passes of the entire dataset to be sent. Default: 1. 
 
 - Examples - >>> from mindspore import DatasetHelper >>> >>> train_dataset = create_custom_dataset() >>> set_helper = DatasetHelper(train_dataset, dataset_sink_mode=False) >>> >>> net = Net() >>> # Object of DatasetHelper is iterable >>> for next_element in set_helper: ... # `next_element` includes data and label, using data to run the net ... data = next_element[0] ... net(data) - dynamic_min_max_shapes()[source]
- Return the minimum and maximum data length of dynamic source dataset. - Examples - >>> from mindspore import DatasetHelper >>> >>> train_dataset = create_custom_dataset() >>> # config dynamic shape >>> dataset.set_dynamic_columns(columns={"data1": [16, None, 83], "data2": [None]}) >>> dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=True) >>> >>> min_shapes, max_shapes = dataset_helper.dynamic_min_max_shapes() 
 - get_data_info()[source]
- In sink mode, it returns the types and shapes of the current data. Generally, it works in dynamic shape scenarios. 
 - sink_size()[source]
- Get sink_size for each iteration. - Examples - >>> from mindspore import DatasetHelper >>> >>> train_dataset = create_custom_dataset() >>> dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=True, sink_size=-1) >>> >>> # if sink_size==-1, then will return the full size of source dataset. >>> sink_size = dataset_helper.sink_size() 
 - types_shapes()[source]
- Get the types and shapes from dataset on the current configuration. - Examples - >>> from mindspore import DatasetHelper >>> >>> train_dataset = create_custom_dataset() >>> dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=True) >>> >>> types, shapes = dataset_helper.types_shapes()