mindspore.ms_function(fn=None, obj=None, input_signature=None)[source]

Create a callable MindSpore graph from a Python function.

This allows the MindSpore runtime to apply optimizations based on graph.

  • fn (Function) – The Python function that will be run as a graph. Default: None.

  • obj (Object) – The Python object is used to distinguish the compiled function. Default: None.

  • input_signature (Tensor) – The Tensor which describes the input arguments. The shape and dtype of the Tensor will be supplied to this function. If input_signature is specified, each input to fn must be a Tensor. And the input parameters of fn cannot accept **kwargs. The shape and dtype of actual inputs should keep the same as input_signature. Otherwise, TypeError will be raised. Default: None.


Function, if fn is not None, returns a callable function that will execute the compiled function; If fn is None, returns a decorator and when this decorator invokes with a single fn argument, the callable function is equal to the case when fn is not None.

Supported Platforms:

Ascend GPU CPU


>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore import ms_function
>>> x = Tensor(np.ones([1, 1, 3, 3]).astype(np.float32))
>>> y = Tensor(np.ones([1, 1, 3, 3]).astype(np.float32))
>>> # create a callable MindSpore graph by calling ms_function
>>> def tensor_add(x, y):
...     z = x + y
...     return z
>>> tensor_add_graph = ms_function(fn=tensor_add)
>>> out = tensor_add_graph(x, y)
>>> # create a callable MindSpore graph through decorator @ms_function
>>> @ms_function
... def tensor_add_with_dec(x, y):
...     z = x + y
...     return z
>>> out = tensor_add_with_dec(x, y)
>>> # create a callable MindSpore graph through decorator @ms_function with input_signature parameter
>>> @ms_function(input_signature=(Tensor(np.ones([1, 1, 3, 3]).astype(np.float32)),
...                               Tensor(np.ones([1, 1, 3, 3]).astype(np.float32))))
... def tensor_add_with_sig(x, y):
...     z = x + y
...     return z
>>> out = tensor_add_with_sig(x, y)