mindscience.models.transformer.VisionTransformer

class mindscience.models.transformer.VisionTransformer(image_size=(192, 384), in_channels=7, out_channels=3, patch_size=16, encoder_depths=12, encoder_embed_dim=768, encoder_num_heads=12, decoder_depths=8, decoder_embed_dim=512, decoder_num_heads=16, dropout_rate=0.0, compute_dtype=mstype.float16)[源代码]

此模块基于 VisionTransformer 骨干,包含编码器、解码器嵌入、解码器和密集层。

参数:
  • image_size (tuple[int], 可选) - 输入的图像大小。默认值: (192, 384)

  • in_channels (int, 可选) - 输入的特征大小。默认值: 7

  • out_channels (int, 可选) - 输出的特征大小。默认值: 3

  • patch_size (int, 可选) - 图像的补丁大小。默认值: 16

  • encoder_depths (int, 可选) - 编码器层的深度。默认值: 12

  • encoder_embed_dim (int, 可选) - 编码器层的嵌入维度。默认值: 768

  • encoder_num_heads (int, 可选) - 编码器层的头数。默认值: 12

  • decoder_depths (int, 可选) - 解码器层的深度。默认值: 8

  • decoder_embed_dim (int, 可选) - 解码器层的嵌入维度。默认值: 512

  • decoder_num_heads (int, 可选) - 解码器层的头数。默认值: 16

  • dropout_rate (float, 可选) - dropout 层的速率。默认值: 0.0

  • compute_dtype (mindspore.dtype, 可选) - 编码器、解码器嵌入、解码器和密集层的数据类型。默认值: mstype.float16

输入:
  • input (Tensor) - 形状为 \((batch\_size, feature\_size, image\_height, image\_width)\)

输出:
  • output (Tensor) - 形状为 \((batch\_size, patchify\_size, embed\_dim)\)。其中 patchify_size = (image_height * image_width) / (patch_size * patch_size)。

样例:

>>> from mindspore import ops
>>> from mindscience.models.transformer.vit import VisionTransformer
>>> input_tensor = ops.rand(32, 3, 192, 384)
>>> print(input_tensor.shape)
(32, 3, 192, 384)
>>>
>>> model = VisionTransformer(in_channels=3,
...             out_channels=3,
...             encoder_depths=6,
...             encoder_embed_dim=768,
...             encoder_num_heads=12,
...             decoder_depths=6,
...             decoder_embed_dim=512,
...             decoder_num_heads=16,
...             )
>>> output_tensor = model(input_tensor)
>>> print(output_tensor.shape)
(32, 288, 768)