mindscience.diffuser.DiffusionTransformer

class mindscience.diffuser.DiffusionTransformer(in_channels, out_channels, hidden_channels, layers, heads, time_token_cond=True, compute_dtype=mstype.float32)[源代码]

基于 Transformer 主干结构的扩散模型实现。

参数:
  • in_channels (int) - 输入特征维度。

  • out_channels (int) - 输出特征维度。

  • hidden_channels (int) - 隐藏层特征维度。

  • layers (int) - Transformer 模块的层数。

  • heads (int) - Transformer 模块的注意力头数。

  • time_token_cond (bool, 可选) - 是否将时间作为条件token。默认 True

  • compute_dtype (mindspore.dtype, 可选) - 计算使用的数据类型。支持 mstype.float32mstype.float16。默认 mstype.float32,表示 mindspore.float32

输入:
  • x (Tensor) - 网络输入张量。形状为 \((batch\_size, sequence\_len, in\_channels)\)

  • timestep (Tensor) - 时间步输入张量。形状为 \((batch\_size,)\)

输出:
  • output (Tensor) - 输出张量。形状为 \((batch\_size, sequence\_len, out\_channels)\)

样例:

>>> from mindspore import ops
>>> from mindscience.diffuser import DiffusionTransformer
>>> in_channels, out_channels, hidden_channels, layers, heads, batch_size, seq_len = 16, 16, 256, 3, 4, 8, 256
>>> model = DiffusionTransformer(in_channels=in_channels,
...                              out_channels=out_channels,
...                              hidden_channels=hidden_channels,
...                              layers=layers,
...                              heads=heads)
>>> x = ops.rand((batch_size, seq_len, in_channels))
>>> timestep = ops.randint(0, 1000, (batch_size,))
>>> output = model(x, timestep)
>>> print(output.shape)
(8, 256, 16)