mindscience.common.batched_jacobian

mindscience.common.batched_jacobian(model)[源代码]

计算网络模型的雅可比矩阵。

说明

本函数在实现中使用了 mindspore.jacrev 接口来计算 Jacobian 矩阵,因此要求 MindSpore 版本 >= 2.0.0

参数:
  • model (mindspore.nn.Cell) - 输入维度为 in_channels 输出维度为 out_channels 的网络模型。

返回:

Tensor,用于计算雅可比矩阵的Jacobian实例。输入维度为 \([batch_size,in_channels]\),输出维度为 \([out_channels,batch_size,in_channels]\)

样例:

>>> import numpy as np
>>> from mindspore import nn, ops, Tensor
>>> from mindspore import dtype as mstype
>>> from mindscience.common import batched_jacobian
>>> np.random.seed(123456)
>>> class Net(nn.Cell):
...     def __init__(self, cin=2, cout=1, hidden=10):
...         super().__init__()
...         self.fc1 = nn.Dense(cin, hidden)
...         self.fc2 = nn.Dense(hidden, hidden)
...         self.fcout = nn.Dense(hidden, cout)
...         self.act = ops.Tanh()
...
...     def construct(self, x):
...         x = self.act(self.fc1(x))
...         x = self.act(self.fc2(x))
...         x = self.fcout(x)
...         return x
>>> model = Net()
>>> jacobian = batched_jacobian(model)
>>> inputs = np.random.random(size=(3, 2))
>>> res = jacobian(Tensor(inputs, mstype.float32))
>>> print(res.shape)
(1, 3, 2)