mindquantum.algorithm.qaia.CAC 源代码

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Coherent Ising Machine with chaotic amplitude control algorithm."""
# pylint: disable=invalid-name
import numpy as np
from scipy.sparse import csr_matrix

from .QAIA import QAIA


[文档]class CAC(QAIA): r""" Coherent Ising Machine with chaotic amplitude control algorithm. Reference: `Coherent Ising machines with optical error correction circuits <https://onlinelibrary.wiley.com/doi/full/10.1002/qute.202100077>`_. Args: J (Union[numpy.array, csr_matrix]): The coupling matrix with shape :math:`(N x N)`. h (numpy.array): The external field with shape :math:`(N, )`. x (numpy.array): The initialized spin value with shape :math:`(N x batch_size)`. Default: ``None``. n_iter (int): The number of iterations. Default: ``1000``. batch_size (int): The number of sampling. Default: ``1``. dt (float): The step size. Default: ``0.075``. """ # pylint: disable=too-many-arguments,too-many-instance-attributes def __init__( self, J, h=None, x=None, n_iter=1000, batch_size=1, dt=0.075, ): """Construct CAC algorithm.""" super().__init__(J, h, x, n_iter, batch_size) self.J = csr_matrix(self.J) self.N = self.J.shape[0] self.dt = dt # The number of first iterations self.Tr = int(0.9 * self.n_iter) # The number of additional iterations self.Tp = self.n_iter - self.Tr # pumping parameters self.p = np.hstack([np.linspace(-0.5, 1, self.Tr), np.ones(self.Tp)]) # target amplitude self.alpha = np.hstack([np.linspace(1, 3, self.Tr), 3.0 * np.ones(self.Tp)]) # coupling strength self.xi = np.sqrt(2 * self.N / np.sum(self.J**2)) # rate of change of error variables self.beta = 0.3 self.initialize()
[文档] def initialize( self, ): """Initialize spin values and error variables.""" if self.x is None: self.x = np.random.normal(0, 10 ** (-4), size=(self.N, self.batch_size)) if self.x.shape[0] != self.N: raise ValueError(f"The size of x {self.x.shape[0]} is not equal to the number of spins {self.N}") self.e = np.ones((self.N, self.batch_size))
# pylint: disable=attribute-defined-outside-init
[文档] def update(self): """Dynamical evolution.""" for i in range(self.n_iter): if self.h is None: self.x = ( self.x + (-self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * (self.J @ self.x)) * self.dt ) else: self.x = ( self.x + (-self.x**3 + (self.p[i] - 1) * self.x + self.xi * self.e * (self.J @ self.x + self.h)) * self.dt ) self.e = self.e + (-self.beta * self.e * (self.x**2 - self.alpha[i])) * self.dt cond = np.abs(self.x) > (1.5 * np.sqrt(self.alpha[i])) self.x = np.where(cond, 1.5 * np.sign(self.x) * np.sqrt(self.alpha[i]), self.x)