Source code for mindquantum.third_party.unitary_cc

#   Copyright 2017 The OpenFermion Developers.
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

"""Module to create and manipulate unitary coupled cluster operators."""

import itertools

import numpy

from mindquantum.core.parameterresolver import ParameterResolver


# pylint: disable=too-many-locals
[docs]def uccsd_singlet_get_packed_amplitudes(single_amplitudes, double_amplitudes, n_qubits, n_electrons): r""" Convert amplitudes for use with singlet UCCSD. The output list contains only those amplitudes that are relevant to singlet UCCSD, in an order suitable for use with the function `uccsd_singlet_generator`. Args: single_amplitudes(numpy.ndarray): :math:`N\times N` array storing single excitation amplitudes corresponding to :math:`t_{i,j} * (a_i^\dagger a_j - \text{H.C.})`. double_amplitudes(numpy.ndarray): :math:`N\times N\times N\times N` array storing double excitation amplitudes corresponding to :math:`t_{i,j,k,l} * (a_i^\dagger a_j a_k^\dagger a_l - \text{H.C.})`. n_qubits(int): Number of spin-orbitals used to represent the system, which also corresponds to number of qubits in a non-compact map. n_electrons(int): Number of electrons in the physical system. Returns: ParameterResolver, List storing the unique single and double excitation amplitudes for a singlet UCCSD operator. The ordering lists unique single excitations before double excitations. Examples: >>> import numpy as np >>> from mindquantum.algorithm.nisq.chem import uccsd_singlet_get_packed_amplitudes >>> n_qubits, n_electrons = 4, 2 >>> np.random.seed(42) >>> ccsd_single_amps = np.random.random((4, 4)) >>> ccsd_double_amps = np.random.random((4, 4, 4, 4)) >>> uccsd_singlet_get_packed_amplitudes(ccsd_single_amps, ccsd_double_amps, ... n_qubits, n_electrons) {'d1_0': 0.76162, 's_0': 0.601115}, const: 0 """ # pylint: disable=import-outside-toplevel from mindquantum.core.operators.utils import down_index, up_index n_spatial_orbitals = n_qubits // 2 n_occupied = int(numpy.ceil(n_electrons / 2)) n_virtual = n_spatial_orbitals - n_occupied singles = ParameterResolver() doubles_1 = ParameterResolver() doubles_2 = ParameterResolver() # pylint: disable=invalid-name # Get singles and doubles amplitudes associated with one spatial occupied-virtual pair for p, q in itertools.product(range(n_virtual), range(n_occupied)): # Get indices of spatial orbitals virtual_spatial = n_occupied + p occupied_spatial = q # Get indices of spin orbitals virtual_up = up_index(virtual_spatial) virtual_down = down_index(virtual_spatial) occupied_up = up_index(occupied_spatial) occupied_down = down_index(occupied_spatial) # Get singles amplitude # Just get up amplitude, since down should be the same singles[f's_{len(singles)}'] = single_amplitudes[virtual_up, occupied_up] # Get doubles amplitude doubles_1[f'd1_{len(doubles_1)}'] = double_amplitudes[virtual_up, occupied_up, virtual_down, occupied_down] # Get doubles amplitudes associated with two spatial occupied-virtual pairs for (p, q), (r, s) in itertools.combinations(itertools.product(range(n_virtual), range(n_occupied)), 2): # Get indices of spatial orbitals virtual_spatial_1 = n_occupied + p occupied_spatial_1 = q virtual_spatial_2 = n_occupied + r occupied_spatial_2 = s # Get indices of spin orbitals # Just get up amplitudes, since down and cross terms should be the same virtual_1_up = up_index(virtual_spatial_1) occupied_1_up = up_index(occupied_spatial_1) virtual_2_up = up_index(virtual_spatial_2) occupied_2_up = up_index(occupied_spatial_2) # Get amplitude doubles_2[f'd2_{len(doubles_2)}'] = double_amplitudes[virtual_1_up, occupied_1_up, virtual_2_up, occupied_2_up] return singles + doubles_1 + doubles_2
# pylint: disable=too-many-locals
[docs]def uccsd_singlet_generator(n_qubits, n_electrons, anti_hermitian=True): """ Create a singlet UCCSD generator for a system with n_electrons. This function generates a FermionOperator for a UCCSD generator designed to act on a single reference state consisting of n_qubits spin orbitals and n_electrons electrons, that is a spin singlet operator, meaning it conserves spin. Args: n_qubits(int): Number of spin-orbitals used to represent the system, which also corresponds to number of qubits in a non-compact map. n_electrons(int): Number of electrons in the physical system. anti_hermitian(bool): Flag to generate only normal CCSD operator rather than unitary variant, primarily for testing Returns: FermionOperator, Generator of the UCCSD operator that builds the UCCSD wavefunction. Examples: >>> from mindquantum.algorithm.nisq.chem import uccsd_singlet_generator >>> uccsd_singlet_generator(4, 2) -s_0 [0^ 2] + -d1_0 [0^ 2 1^ 3] + -s_0 [1^ 3] + -d1_0 [1^ 3 0^ 2] + s_0 [2^ 0] + d1_0 [2^ 0 3^ 1] + s_0 [3^ 1] + d1_0 [3^ 1 2^ 0] """ # pylint: disable=import-outside-toplevel from mindquantum.core.operators import ( # pylint: disable=import-outside-toplevel FermionOperator, ) from mindquantum.core.operators.utils import down_index, up_index if n_qubits % 2 != 0: raise ValueError('The total number of spin-orbitals should be even.') n_spatial_orbitals = n_qubits // 2 n_occupied = int(numpy.ceil(n_electrons / 2)) n_virtual = n_spatial_orbitals - n_occupied # Initialize operator generator = FermionOperator() # Generate excitations spin_index_functions = [up_index, down_index] # pylint: disable=invalid-name # Generate all spin-conserving single and double excitations derived from one spatial occupied-virtual pair for i, (p, q) in enumerate(itertools.product(range(n_virtual), range(n_occupied))): # Get indices of spatial orbitals virtual_spatial = n_occupied + p occupied_spatial = q for spin in range(2): # Get the functions which map a spatial orbital index to a # spin orbital index this_index = spin_index_functions[spin] other_index = spin_index_functions[1 - spin] # Get indices of spin orbitals virtual_this = this_index(virtual_spatial) virtual_other = other_index(virtual_spatial) occupied_this = this_index(occupied_spatial) occupied_other = other_index(occupied_spatial) # Generate single excitations coeff = ParameterResolver({f's_{i}': 1}) generator += FermionOperator(((virtual_this, 1), (occupied_this, 0)), coeff) if anti_hermitian: generator += FermionOperator(((occupied_this, 1), (virtual_this, 0)), -1 * coeff) # Generate double excitation coeff = ParameterResolver({f'd1_{i}': 1}) generator += FermionOperator( ((virtual_this, 1), (occupied_this, 0), (virtual_other, 1), (occupied_other, 0)), coeff ) if anti_hermitian: generator += FermionOperator( ((occupied_other, 1), (virtual_other, 0), (occupied_this, 1), (virtual_this, 0)), -1 * coeff ) # Generate all spin-conserving double excitations derived from two spatial occupied-virtual pairs for i, ((p, q), (r, s)) in enumerate( itertools.combinations(itertools.product(range(n_virtual), range(n_occupied)), 2) ): # Get indices of spatial orbitals virtual_spatial_1 = n_occupied + p occupied_spatial_1 = q virtual_spatial_2 = n_occupied + r occupied_spatial_2 = s # Generate double excitations coeff = ParameterResolver({f'd2_{i}': 1}) for (spin_a, spin_b) in itertools.product(range(2), repeat=2): # Get the functions which map a spatial orbital index to a # spin orbital index index_a = spin_index_functions[spin_a] index_b = spin_index_functions[spin_b] # Get indices of spin orbitals virtual_1_a = index_a(virtual_spatial_1) occupied_1_a = index_a(occupied_spatial_1) virtual_2_b = index_b(virtual_spatial_2) occupied_2_b = index_b(occupied_spatial_2) if virtual_1_a == virtual_2_b or occupied_1_a == occupied_2_b: continue generator += FermionOperator( ((virtual_1_a, 1), (occupied_1_a, 0), (virtual_2_b, 1), (occupied_2_b, 0)), coeff ) if anti_hermitian: generator += FermionOperator( ((occupied_2_b, 1), (virtual_2_b, 0), (occupied_1_a, 1), (virtual_1_a, 0)), -1 * coeff ) return generator