mindquantum.algorithm.qaia.SFC
- class mindquantum.algorithm.qaia.SFC(J, h=None, x=None, n_iter=1000, batch_size=1, dt=0.1, k=0.2)[source]
- Coherent Ising Machine with separated feedback control algorithm. - Reference: Coherent Ising machines with optical error correction circuits. - Note - For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using x.copy(). - Parameters
- J (Union[numpy.array, scipy.sparse.spmatrix]) – The coupling matrix with shape (N x N). 
- h (numpy.array) – The external field with shape (N, ). 
- x (numpy.array) – The initialized spin value with shape (N x batch_size). Will be modified during optimization. If not provided ( - None), will be initialized as random values drawn from normal distribution N(0, 0.1). Default:- None.
- n_iter (int) – The number of iterations. Default: - 1000.
- batch_size (int) – The number of sampling. Default: - 1.
- dt (float) – The step size. Default: - 0.1.
- k (float) – parameter of deviation between mean-field and error variables. Default: - 0.2.
 
 - Examples - >>> import numpy as np >>> from mindquantum.algorithm.qaia import SFC >>> J = np.array([[0, -1], [-1, 0]]) >>> solver = SFC(J, batch_size=5) >>> solver.update() >>> print(solver.calc_cut()) [1. 1. 1. 1. 1.] >>> print(solver.calc_energy()) [-1. -1. -1. -1. -1.]