mindquantum.algorithm.qaia.DSB
- class mindquantum.algorithm.qaia.DSB(J, h=None, x=None, n_iter=1000, batch_size=1, dt=1, xi=None, backend='cpu-float32')[source]
- Discrete SB algorithm. - Reference: High-performance combinatorial optimization based on classical mechanics. - Note - For memory efficiency, the input array 'x' is not copied and will be modified in-place during optimization. If you need to preserve the original data, please pass a copy using x.copy(). - Parameters
- J (Union[numpy.array, scipy.sparse.spmatrix]) – The coupling matrix with shape (N x N). 
- h (numpy.array) – The external field with shape (N, ). 
- x (numpy.array) – The initialized spin value with shape (N x batch_size). Will be modified during optimization. If not provided ( - None), will be initialized as random values uniformly distributed in [-0.01, 0.01]. Default:- None.
- n_iter (int) – The number of iterations. Default: - 1000.
- batch_size (int) – The number of sampling. Default: - 1.
- dt (float) – The step size. Default: - 1.
- xi (float) – positive constant with the dimension of frequency. Default: - None.
- backend (str) – Computation backend and precision to use: 'cpu-float32', 'gpu-float16', or 'gpu-int8'. Default: - 'cpu-float32'.
 
 - Examples - >>> import numpy as np >>> from mindquantum.algorithm.qaia import DSB >>> J = np.array([[0, -1], [-1, 0]]) >>> solver = DSB(J, batch_size=5, backend='cpu-float32') >>> solver.update() >>> print(solver.calc_cut()) [0. 1. 1. 1. 1.] >>> print(solver.calc_energy()) [ 1. -1. -1. -1. -1.]