mindchemistry.cell.orb.NodeHead
- class mindchemistry.cell.orb.NodeHead(latent_dim: int, num_mlp_layers: int, mlp_hidden_dim: int, target_property_dim: int, dropout: Optional[float] = None, remove_mean: bool = True)[source]
Node-level prediction head.
Implements neural network head for predicting node-level properties from node features. This head can be added to base models to enable auxiliary tasks during pretraining or added in fine-tuning steps.
- Parameters
latent_dim (int) – Input feature dimension for each node.
num_mlp_layers (int) – Number of hidden layers in MLP.
mlp_hidden_dim (int) – Hidden dimension size of MLP.
target_property_dim (int) – Output dimension of node-level target property.
dropout (Optional[float], optional) – Dropout rate for MLP. Default:
None
.remove_mean (bool, optional) – If True, remove mean from output, typically used for force prediction. Default:
True
.
- Inputs:
node_features (dict) - Node feature dictionary, must contain key "feat" with shape \((n_{nodes}, latent\_dim)\).
n_node (Tensor) - Number of nodes in graph, shape \((1,)\).
- Outputs:
output (dict) - Dictionary containing key "node_pred" with value of shape \((n_{nodes}, target\_property\_dim)\).
- Raises
ValueError – If required feature keys are missing in node_features.
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> import mindspore >>> from mindspore import Tensor >>> from mindchemistry.cell.orb.gns import NodeHead >>> node_head = NodeHead( ... latent_dim=256, ... num_mlp_layers=1, ... mlp_hidden_dim=256, ... target_property_dim=3, ... remove_mean=True, ... ) >>> n_atoms = 4 >>> n_node = Tensor([n_atoms], mindspore.int32) >>> atomic_numbers = Tensor(np.random.randint(1, 119, size=(n_atoms,), dtype=np.int32)) >>> atomic_numbers_embedding_np = np.zeros((n_atoms, 118), dtype=np.float32) >>> for i, num in enumerate(atomic_numbers.asnumpy()): ... atomic_numbers_embedding_np[i, num - 1] = 1.0 >>> node_features = { ... "atomic_numbers": atomic_numbers, ... "atomic_numbers_embedding": Tensor(atomic_numbers_embedding_np), ... "positions": Tensor(np.random.randn(n_atoms, 3).astype(np.float32)), ... "feat": Tensor(np.random.randn(n_atoms, 256).astype(np.float32)) ... } >>> output = node_head(node_features, n_node) >>> print(output['node_pred'].shape) (4, 3)