比较与torch.optim.SparseAdam的差异
torch.optim.SparseAdam
class torch.optim.SparseAdam(
    params,
    lr=0.001,
    betas=(0.9, 0.999),
    eps=1e-08
)
更多内容详见torch.optim.SparseAdam。
mindspore.nn.LazyAdam
class mindspore.nn.LazyAdam(
    params,
    learning_rate=1e-3,
    beta1=0.9,
    beta2=0.999,
    eps=1e-8,
    use_locking=False,
    use_nesterov=False,
    weight_decay=0.0,
    loss_scale=1.0
)
更多内容详见mindspore.nn.LazyAdam。
差异对比
torch.optim.SparseAdam 为PyTorch中专门用于稀疏场景的Adam算法;
mindspore.nn.LazyAdam 既可以用于常规场景,也可以用于稀疏场景:
- 当输入梯度为稀疏Tensor时,默认参数下 - mindspore.nn.LazyAdam与- torch.optim.SparseAdam一致,但- mindspore.nn.LazyAdam当前仅支持CPU后端;
- 当输入梯度为非稀疏时, - mindspore.nn.LazyAdam自动执行- mindspore.nn.Adam算法,且支持CPU/GPU/Ascend后端。
| 分类 | 子类 | PyTorch | MindSpore | 差异 | 
|---|---|---|---|---|
| 参数 | 参数1 | params | params | 功能一致 | 
| 参数2 | lr | learning_rate | 功能一致,参数名不同 | |
| 参数3 | betas | beta1, beta2 | 功能一致,参数名不同 | |
| 参数4 | eps | eps | 功能一致 | |
| 参数5 | - | use_locking | MindSpore的  | |
| 参数6 | - | use_nesterov | MindSpore的  | |
| 参数7 | - | weight_decay | PyTorch无此参数 | |
| 参数8 | - | loss_scale | MindSpore的  | 
代码示例
# MindSpore.
import mindspore
from mindspore import nn
net = nn.Dense(2, 3)
optimizer = nn.LazyAdam(net.trainable_params())
criterion = nn.MAELoss(reduction="mean")
def forward_fn(data, label):
    logits = net(data)
    loss = criterion(logits, label)
    return loss, logits
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss
# PyTorch
import torch
model = torch.nn.Linear(2, 3)
criterion = torch.nn.L1Loss(reduction='mean')
optimizer = torch.optim.SparseAdam(model.parameters())
def train_step(data, label):
    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, label)
    loss.backward()
    optimizer.step()