官方模型库
领域套件与扩展包
计算机视觉
图像分类(骨干类)
以下数据基于Atlas训练系列产品和ImageNet-1K数据集获得。
| model | acc@1 | mindcv recipe | vanilla mindspore | 
|---|---|---|---|
| vgg11 | 71.86 | ||
| vgg13 | 72.87 | ||
| vgg16 | 74.61 | ||
| vgg19 | 75.21 | ||
| resnet18 | 70.21 | ||
| resnet34 | 74.15 | ||
| resnet50 | 76.69 | ||
| resnet101 | 78.24 | ||
| resnet152 | 78.72 | ||
| resnetv2_50 | 76.90 | ||
| resnetv2_101 | 78.48 | ||
| dpn92 | 79.46 | ||
| dpn98 | 79.94 | ||
| dpn107 | 80.05 | ||
| dpn131 | 80.07 | ||
| densenet121 | 75.64 | ||
| densenet161 | 79.09 | ||
| densenet169 | 77.26 | ||
| densenet201 | 78.14 | ||
| seresnet18 | 71.81 | ||
| seresnet34 | 75.36 | ||
| seresnet50 | 78.31 | ||
| seresnext26 | 77.18 | ||
| seresnext50 | 78.71 | ||
| skresnet18 | 73.09 | ||
| skresnet34 | 76.71 | ||
| skresnet50_32x4d | 79.08 | ||
| resnext50_32x4d | 78.53 | ||
| resnext101_32x4d | 79.83 | ||
| resnext101_64x4d | 80.30 | ||
| resnext152_64x4d | 80.52 | ||
| rexnet_x09 | 77.07 | ||
| rexnet_x10 | 77.38 | ||
| rexnet_x13 | 79.06 | ||
| rexnet_x15 | 79.94 | ||
| rexnet_x20 | 80.64 | ||
| resnest50 | 80.81 | ||
| resnest101 | 82.50 | ||
| res2net50 | 79.35 | ||
| res2net101 | 79.56 | ||
| res2net50_v1b | 80.32 | ||
| res2net101_v1b | 95.41 | ||
| googlenet | 72.68 | ||
| inceptionv3 | 79.11 | ||
| inceptionv4 | 80.88 | ||
| mobilenet_v1_025 | 53.87 | ||
| mobilenet_v1_050 | 65.94 | ||
| mobilenet_v1_075 | 70.44 | ||
| mobilenet_v1_100 | 72.95 | ||
| mobilenet_v2_075 | 69.98 | ||
| mobilenet_v2_100 | 72.27 | ||
| mobilenet_v2_140 | 75.56 | ||
| mobilenet_v3_small | 68.10 | ||
| mobilenet_v3_large | 75.23 | ||
| shufflenet_v1_g3_x0_5 | 57.05 | ||
| shufflenet_v1_g3_x1_5 | 67.77 | ||
| shufflenet_v2_x0_5 | 57.05 | ||
| shufflenet_v2_x1_0 | 67.77 | ||
| shufflenet_v2_x1_5 | 57.05 | ||
| shufflenet_v2_x2_0 | 67.77 | ||
| xception | 79.01 | ||
| ghostnet_50 | 66.03 | ||
| ghostnet_100 | 73.78 | ||
| ghostnet_130 | 75.50 | ||
| nasnet_a_4x1056 | 73.65 | ||
| mnasnet_0.5 | 68.07 | ||
| mnasnet_0.75 | 71.81 | ||
| mnasnet_1.0 | 74.28 | ||
| mnasnet_1.4 | 76.01 | ||
| efficientnet_b0 | 76.89 | ||
| efficientnet_b1 | 78.95 | ||
| efficientnet_b2 | 79.80 | ||
| efficientnet_b3 | 80.50 | ||
| efficientnet_v2 | 83.77 | ||
| regnet_x_200mf | 68.74 | ||
| regnet_x_400mf | 73.16 | ||
| regnet_x_600mf | 73.34 | ||
| regnet_x_800mf | 76.04 | ||
| regnet_y_200mf | 70.30 | ||
| regnet_y_400mf | 73.91 | ||
| regnet_y_600mf | 75.69 | ||
| regnet_y_800mf | 76.52 | ||
| mixnet_s | 75.52 | ||
| mixnet_m | 76.64 | ||
| mixnet_l | 78.73 | ||
| hrnet_w32 | 80.64 | ||
| hrnet_w48 | 81.19 | ||
| bit_resnet50 | 76.81 | ||
| bit_resnet50x3 | 80.63 | ||
| bit_resnet101 | 77.93 | ||
| repvgg_a0 | 72.19 | ||
| repvgg_a1 | 74.19 | ||
| repvgg_a2 | 76.63 | ||
| repvgg_b0 | 74.99 | ||
| repvgg_b1 | 78.81 | ||
| repvgg_b2 | 79.29 | ||
| repvgg_b3 | 80.46 | ||
| repvgg_b1g2 | 78.03 | ||
| repvgg_b1g4 | 77.64 | ||
| repvgg_b2g4 | 78.80 | ||
| repmlp_t224 | 76.71 | ||
| convnext_tiny | 81.91 | ||
| convnext_small | 83.40 | ||
| convnext_base | 83.32 | ||
| vit_b_32_224 | 75.86 | ||
| vit_l_16_224 | 76.34 | ||
| vit_l_32_224 | 73.71 | ||
| swintransformer_tiny | 80.82 | ||
| pvt_tiny | 74.81 | ||
| pvt_small | 79.66 | ||
| pvt_medium | 81.82 | ||
| pvt_large | 81.75 | ||
| pvt_v2_b0 | 71.50 | ||
| pvt_v2_b1 | 78.91 | ||
| pvt_v2_b2 | 81.99 | ||
| pvt_v2_b3 | 82.84 | ||
| pvt_v2_b4 | 83.14 | ||
| pit_ti | 72.96 | ||
| pit_xs | 78.41 | ||
| pit_s | 80.56 | ||
| pit_b | 81.87 | ||
| coat_lite_tiny | 77.35 | ||
| coat_lite_mini | 78.51 | ||
| coat_tiny | 79.67 | ||
| convit_tiny | 73.66 | ||
| convit_tiny_plus | 77.00 | ||
| convit_small | 81.63 | ||
| convit_small_plus | 81.80 | ||
| convit_base | 82.10 | ||
| convit_base_plus | 81.96 | ||
| crossvit_9 | 73.56 | ||
| crossvit_15 | 81.08 | ||
| crossvit_18 | 81.93 | ||
| mobilevit_xx_small | 68.90 | ||
| mobilevit_x_small | 74.98 | ||
| mobilevit_small | 78.48 | ||
| visformer_tiny | 78.28 | ||
| visformer_tiny_v2 | 78.82 | ||
| visformer_small | 81.76 | ||
| visformer_small_v2 | 82.17 | ||
| edgenext_xx_small | 71.02 | ||
| edgenext_x_small | 75.14 | ||
| edgenext_small | 79.15 | ||
| edgenext_base | 82.24 | ||
| poolformer_s12 | 77.33 | ||
| xcit_tiny_12_p16 | 77.67 | 
目标检测
以下数据基于Atlas训练系列产品和COCO2017数据集获得。
yolo
| model | map | mindyolo recipe | vanilla mindspore | 
|---|---|---|---|
| yolov8_n | 37.2 | ||
| yolov8_s | 44.6 | ||
| yolov8_m | 50.5 | ||
| yolov8_l | 52.8 | ||
| yolov8_x | 53.7 | ||
| yolov7_t | 37.5 | ||
| yolov7_l | 50.8 | ||
| yolov7_x | 52.4 | ||
| yolov5_n | 27.3 | ||
| yolov5_s | 37.6 | ||
| yolov5_m | 44.9 | ||
| yolov5_l | 48.5 | ||
| yolov5_x | 50.5 | ||
| yolov4_csp | 45.4 | ||
| yolov4_csp(silu) | 45.8 | ||
| yolov3_darknet53 | 45.5 | ||
| yolox_n | 24.1 | ||
| yolox_t | 33.3 | ||
| yolox_s | 40.7 | ||
| yolox_m | 46.7 | ||
| yolox_l | 49.2 | ||
| yolox_x | 51.6 | ||
| yolox_darknet53 | 47.7 | 
经典
| model | map | mind_series recipe | vanilla mindspore | 
|---|---|---|---|
| ssd_vgg16 | 23.2 | ||
| ssd_mobilenetv1 | 22.0 | ||
| ssd_mobilenetv2 | 29.1 | ||
| ssd_resnet50 | 34.3 | ||
| fasterrcnn | 58 | ||
| maskrcnn_mobilenetv1 | coming soon | ||
| maskrcnn_resnet50 | coming soon | 
语义分割
| model | mind_series recipe | vanilla mindspore | 
|---|---|---|
| ocrnet | ||
| deeplab v3 | ||
| deeplab v3 plus | ||
| unet | 
OCR
文本检测
| model | dataset | fscore | mindocr recipe | vanilla mindspore | 
|---|---|---|---|---|
| dbnet_mobilenetv3 | icdar2015 | 77.23 | ||
| dbnet_resnet18 | icdar2015 | 81.73 | ||
| dbnet_resnet50 | icdar2015 | 85.05 | ||
| dbnet++_resnet50 | icdar2015 | 86.74 | ||
| psenet_resnet152 | icdar2015 | 82.06 | ||
| east_resnet50 | icdar2015 | 84.87 | ||
| fcenet_resnet50 | icdar2015 | 84.12 | 
文本识别
| model | dataset | acc | mindocr recipe | vanilla mindspore | 
|---|---|---|---|---|
| svtr_tiny | IC03,13,15,IIIT,etc | 89.02 | ||
| crnn_vgg7 | IC03,13,15,IIIT,etc | 82.03 | ||
| crnn_resnet34_vd | IC03,13,15,IIIT,etc | 84.45 | ||
| rare_resnet34_vd | IC03,13,15,IIIT,etc | 85.19 | 
文本方向分类
| model | dataset | acc | mindocr recipe | 
|---|---|---|---|
| mobilenetv3 | RCTW17,MTWI,LSVT | 94.59 | 
人脸
| model | dataset | acc | mindface recipe | vanilla mindspore | 
|---|---|---|---|---|
| arcface_mobilefacenet-0.45g | MS1MV2 | 98.70 | ||
| arcface_r50 | MS1MV2 | 99.76 | ||
| arcface_r100 | MS1MV2 | 99.38 | ||
| arcface_vit_t | MS1MV2 | 99.71 | ||
| arcface_vit_s | MS1MV2 | 99.76 | ||
| arcface_vit_b | MS1MV2 | 99.81 | ||
| arcface_vit_l | MS1MV2 | 99.75 | ||
| retinaface_mobilenet_0.25 | WiderFace | 90.77/88.2/74.76 | ||
| retinaface_r50 | WiderFace | 95.07/93.61/84.84 | 
语言模型
| model | mindformer recipe | vanilla mindspore | 
|---|---|---|
| bert_base | ||
| t5_small | ||
| gpt2_small | ||
| gpt2_13b | ||
| gpt2_52b | ||
| pangu_alpha | ||
| glm_6b | ||
| glm_6b_lora | ||
| llama_7b | ||
| llama_13b | ||
| llama_65b | ||
| llama_7b_lora | ||
| bloom_560m | ||
| bloom_7.1b | ||
| bloom_65b | ||
| bloom_176b | 
强化学习
| Algorithm | Discrete Action Space | Continuous Action Space | CPU | GPU | Ascend | Environment | Reward | 
|---|---|---|---|---|---|---|---|
| ✅ | / | ✅ | ✅ | ✅ | 195 | ||
| / | ✅ | ✅ | ✅ | ✅ | 4800 | ||
| ✅ | / | ✅ | ✅ | ✅ | 195 | ||
| ✅ | / | ✅ | ✅ | ✅ | 195 | ||
| / | ✅ | ✅ | ✅ | ✅ | 4800 | ||
| ✅ | / | ✅ | ✅ | ✅ | 90%/-145 | ||
| / | ✅ | ✅ | ✅ | ✅ | 4800 | ||
| / | ✅ | ✅ | ✅ | ✅ | 4800 | ||
| ✅ | / | ✅ | ✅ | ✅ | 195 | ||
| ✅ | / | / | ✅ | ✅ | 195 | ||
| / | ✅ | ✅ | ✅ | ✅ | 3500 | ||
| ✅ | / | ✅ | ✅ | ✅ | -145 | ||
| / | ✅ | ✅ | ✅ | ✅ | 4800 | ||
| / | ✅ | ✅ | ✅ | ✅ | 5000 | ||
| / | ✅ | / | ✅ | ✅ | 900 | ||
| / | ✅ | ✅ | ✅ | ✅ | 3000 | ||
| ✅ | / | ✅ | ✅ | ✅ | -140 | ||
| ✅ | / | ✅ | ✅ | ✅ | 195 | ||
| ✅ | / | ✅ | ✅ | ✅ | 195 | ||
| ✅ | / | ✅ | ✅ | ✅ | 195 | 
科学计算套件
| 领域 | 网络 | MindSpore实现 | Ascend | GPU | 
|---|---|---|---|---|
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | |||
| 通用物理 | ✅ | |||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | |||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | |||
| 通用物理 | ✅ | |||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 通用物理 | ✅ | ✅ | ||
| 哈密顿系统 | ✅ | ✅ | ||
| 弹性动力学 | ✅ | ✅ | ||
| 热力学 | ✅ | ✅ | ||
| 气象学 | ✅ | ✅ | ||
| 地质学 | ✅ | ✅ | ||
| 地质学 | ✅ | ✅ | ||
| 海洋物理 | ✅ | |||
| 海洋物理 | ✅ | ✅ | ||
| 电磁学 | ✅ | ✅ | ||
| 电磁学 | ✅ | ✅ | ||
| 电磁学 | ✅ | ✅ | ||
| 电磁学 | ✅ | ✅ | ||
| 电磁学 | ✅ | |||
| 电磁学 | ✅ | ✅ | ||
| 电磁学 | ✅ | ✅ | ||
| 电磁学 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算生物 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | ||
| 计算流体 | ✅ | ✅ | 
大模型套件
Transformers
| model | dataset | metric | score | mindformers config | 
|---|---|---|---|---|
| bert_base_uncased | wiki | - | - | |
| bert_tiny_uncased | wiki | - | - | |
| qa_bert_base_uncased | SQuAD v1.1 | EM / F1 | 80.74 / 88.33 | |
| tokcls_bert_base_chinese_cluener | CLUENER | Entity F1 | 0.7905 | |
| txtcls_bert_base_uncased_mnli | Mnli | Entity F1 | 84.80% | |
| clip_vit_b_32 | Cifar100 | Accuracy | 57.24% | |
| clip_vit_b_16 | Cifar100 | Accuracy | 61.41% | |
| clip_vit_l_14 | Cifar100 | Accuracy | 69.67% | |
| clip_vit_l_14@336 | Cifar100 | Accuracy | 68.19% | |
| glm_6b | ADGEN | BLEU-4 / Rouge-1 / Rouge-2 / Rouge-l | 8.42 / 31.75 / 7.98 / 25.28 | |
| gpt2 | wikitext-2 | - | - | |
| gpt2_13b | wikitext-2 | - | - | |
| gpt2_52b | wikitext-2 | - | - | |
| llama_7b | alpac | - | - | |
| llama_13b | alpac | - | - | |
| mae_vit_base_p16 | ImageNet-1K | - | - | |
| vit_base_p16 | ImageNet-1K | Accuracy | 83.71% | |
| pangualpha_2_6b | 悟道数据集 | - | - | |
| pangualpha_13b | 悟道数据集 | - | - | |
| swin_base_p4w7 | ImageNet-1K | Accuracy | 83.44% | |
| t5_small | WMT16 | - | - | |
| t5_tiny | WMT16 | - | - | 
推荐
| model | dataset | auc | mindrec recipe | vanilla mindspore | 
|---|---|---|---|---|
| Wide&Deep | Criteo | 0.8 | ||
| Deep&Cross Network (DCN) | Criteo | 0.8 |