比较与torchvision.transforms.Normalize的差异
torchvision.transforms.Normalize
class torchvision.transforms.Normalize(mean, std, inplace=False)
mindspore.dataset.vision.Normalize
class mindspore.dataset.vision.Normalize(mean, std, is_hwc=True)
差异对比
PyTorch:根据均值和标准差对输入图像进行归一化,不支持指定图像的格式。
MindSpore:根据均值和标准差对输入图像进行归一化,不支持原地修改。
| 分类 | 子类 | PyTorch | MindSpore | 差异 | 
|---|---|---|---|---|
| 参数 | 参数1 | mean | mean | - | 
| 参数2 | std | std | - | |
| 参数3 | inplace | - | 是否对Tensor进行原地修改 | |
| 参数4 | - | is_hwc | 指定图像的格式是否为HWC或CHW格式 | 
代码示例
from download import download
from PIL import Image
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/flamingos.jpg"
download(url, './flamingos.jpg', replace=True)
orig_img = Image.open('flamingos.jpg')
# PyTorch
import torchvision.transforms as T
normalize = T.Normalize(mean=[0, 0, 0], std=[1, 1, 1])
to_tensor = T.ToTensor()
img_torch = T.Compose([to_tensor, normalize])((orig_img))
print(img_torch.shape)
# Torch tensor is in C,H,W format
# Out: torch.Size([3, 292, 471])
# MindSpore
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
normalize = vision.Normalize(mean=[0, 0, 0], std=[1, 1, 1], is_hwc=False)
to_tensor = vision.ToTensor()
img_ms = transforms.Compose([to_tensor, normalize])((orig_img))
print(img_ms[0].shape)
# vision.ToTensor change the format from HWC to CHW, so normalize have to specify `is_hwc=False`
# Out: (3, 292, 471)