mindspore.dataset.Dataset.filter
- mindspore.dataset.Dataset.filter(predicate, input_columns=None, num_parallel_workers=None)[源代码]
通过自定义判断条件对数据集对象中的数据进行过滤。
- 参数:
predicate (callable) - Python可调用对象。要求该对象接收n个入参,用于指代每个数据列的数据,最后返回值一个bool值。 如果返回值为False,则表示过滤掉该条数据。注意n的值与参数 input_columns 表示的输入列数量一致。
input_columns (Union[str, list[str]], 可选) - filter 操作的输入数据列。默认值:None,predicate 将应用于数据集中的所有列。
num_parallel_workers (int, 可选) - 指定 filter 操作的并发线程数。默认值:None,使用mindspore.dataset.config中配置的线程数。
- 返回:
Dataset,执行给定筛选过滤操作的数据集对象。
样例:
>>> # generator data(0 ~ 63) >>> # filter the data that greater than or equal to 11 >>> dataset = dataset.filter(predicate=lambda data: data < 11, input_columns = ["data"])