Source code for mindspore.mindrecord.tools.csv_to_mr

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Csv format convert tool for MindRecord.
"""
from importlib import import_module
import os

from mindspore import log as logger
from ..filewriter import FileWriter
from ..shardutils import check_filename, ExceptionThread

try:
    pd = import_module("pandas")
except ModuleNotFoundError:
    pd = None

__all__ = ['CsvToMR']


[文档]class CsvToMR: """ A class to transform from csv to MindRecord. Note: For details about Examples, please refer to `Converting CSV Dataset <https:// www.mindspore.cn/tutorials/zh-CN/r1.8/advanced/dataset/record.html#converting-csv-dataset>`_. Args: source (str): The file path of csv. destination (str): The MindRecord file path to transform into, ensure that no file with the same name exists in the directory. columns_list(list[str], optional): A list of columns to be read. Default: None. partition_number (int, optional): The partition size, Default: 1. Raises: ValueError: If `source`, `destination`, `partition_number` is invalid. RuntimeError: If `columns_list` is invalid. """ def __init__(self, source, destination, columns_list=None, partition_number=1): if not pd: raise Exception("Module pandas is not found, please use pip install it.") if isinstance(source, str): check_filename(source) self.source = source else: raise ValueError("The parameter source must be str.") self._check_columns(columns_list, "columns_list") self.columns_list = columns_list if isinstance(destination, str): check_filename(destination) self.destination = destination else: raise ValueError("The parameter destination must be str.") if partition_number is not None: if not isinstance(partition_number, int): raise ValueError("The parameter partition_number must be int") self.partition_number = partition_number else: raise ValueError("The parameter partition_number must be int") self.writer = FileWriter(self.destination, self.partition_number) def _check_columns(self, columns, columns_name): """ Validate the columns of csv """ if not columns: return if isinstance(columns, list): for col in columns: if not isinstance(col, str): raise ValueError("The parameter {} must be list of str.".format(columns_name)) else: raise ValueError("The parameter {} must be list of str.".format(columns_name)) def _get_schema(self, df): """ Construct schema from df columns """ if self.columns_list: for col in self.columns_list: if col not in df.columns: raise RuntimeError("The parameter columns_list is illegal, column {} does not exist.".format(col)) else: self.columns_list = df.columns schema = {} for col in self.columns_list: if str(df[col].dtype) == 'int64': schema[col] = {"type": "int64"} elif str(df[col].dtype) == 'float64': schema[col] = {"type": "float64"} elif str(df[col].dtype) == 'bool': schema[col] = {"type": "int32"} else: schema[col] = {"type": "string"} if not schema: raise RuntimeError("Failed to generate schema from csv file.") return schema def _get_row_of_csv(self, df, columns_list): """Get row data from csv file.""" for _, r in df.iterrows(): row = {} for col in columns_list: if str(df[col].dtype) == 'bool': row[col] = int(r[col]) else: row[col] = r[col] yield row
[文档] def run(self): """ Execute transformation from csv to MindRecord. Returns: MSRStatus, SUCCESS or FAILED. """ if not os.path.exists(self.source): raise IOError("Csv file {} do not exist.".format(self.source)) pd.set_option('display.max_columns', None) df = pd.read_csv(self.source) csv_schema = self._get_schema(df) logger.info("transformed MindRecord schema is: {}".format(csv_schema)) # set the header size self.writer.set_header_size(1 << 24) # set the page size self.writer.set_page_size(1 << 26) # create the schema self.writer.add_schema(csv_schema, "csv_schema") # add the index self.writer.add_index(list(self.columns_list)) csv_iter = self._get_row_of_csv(df, self.columns_list) batch_size = 256 transform_count = 0 while True: data_list = [] try: for _ in range(batch_size): data_list.append(csv_iter.__next__()) transform_count += 1 self.writer.write_raw_data(data_list) logger.info("transformed {} record...".format(transform_count)) except StopIteration: if data_list: self.writer.write_raw_data(data_list) logger.info( "transformed {} record...".format(transform_count)) break ret = self.writer.commit() return ret
[文档] def transform(self): """ Encapsulate the run function to exit normally. Returns: MSRStatus, SUCCESS or FAILED. """ t = ExceptionThread(target=self.run) t.daemon = True t.start() t.join() if t.exitcode != 0: raise t.exception return t.res