Source code for mindspore.mindrecord.tools.cifar100_to_mr

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Cifar100 convert tool for MindRecord.
"""

from importlib import import_module
import os
import numpy as np

from mindspore import log as logger
from .cifar100 import Cifar100
from ..common.exceptions import PathNotExistsError
from ..filewriter import FileWriter
from ..shardutils import check_filename, ExceptionThread, SUCCESS, FAILED

try:
    cv2 = import_module("cv2")
except ModuleNotFoundError:
    cv2 = None

__all__ = ['Cifar100ToMR']


[文档]class Cifar100ToMR: """ A class to transform from cifar100 to MindRecord. Note: For details about Examples, please refer to `Converting the CIFAR-10 Dataset <https:// www.mindspore.cn/tutorials/zh-CN/r1.8/advanced/dataset/record.html#converting-the-cifar-10-dataset>`_. Args: source (str): The cifar100 directory to be transformed. destination (str): MindRecord file path to transform into, ensure that no file with the same name exists in the directory. Raises: ValueError: If source or destination is invalid. """ def __init__(self, source, destination): check_filename(source) self.source = source files = os.listdir(self.source) train_data_flag = False test_data_flag = False for file in files: if file == "train": train_data_flag = True if file == "test": test_data_flag = True if not train_data_flag: raise PathNotExistsError("train") if not test_data_flag: raise PathNotExistsError("test") check_filename(destination) self.destination = destination self.writer = None
[文档] def run(self, fields=None): """ Execute transformation from cifar100 to MindRecord. Args: fields (list[str]): A list of index field, e.g.["fine_label", "coarse_label"]. Default: None. Returns: MSRStatus, SUCCESS or FAILED. """ if fields and not isinstance(fields, list): raise ValueError("The parameter fields should be None or list") cifar100_data = Cifar100(self.source, False) cifar100_data.load_data() images = cifar100_data.images logger.info("train images: {}".format(images.shape)) fine_labels = cifar100_data.fine_labels logger.info("train images fine label: {}".format(fine_labels.shape)) coarse_labels = cifar100_data.coarse_labels logger.info("train images coarse label: {}".format(coarse_labels.shape)) test_images = cifar100_data.Test.images logger.info("test images: {}".format(test_images.shape)) test_fine_labels = cifar100_data.Test.fine_labels logger.info("test images fine label: {}".format(fine_labels.shape)) test_coarse_labels = cifar100_data.Test.coarse_labels logger.info("test images coarse label: {}".format(coarse_labels.shape)) data_list = _construct_raw_data(images, fine_labels, coarse_labels) test_data_list = _construct_raw_data(test_images, test_fine_labels, test_coarse_labels) if _generate_mindrecord(self.destination, data_list, fields, "img_train") != SUCCESS: return FAILED if _generate_mindrecord(self.destination + "_test", test_data_list, fields, "img_test") != SUCCESS: return FAILED return SUCCESS
[文档] def transform(self, fields=None): """ Encapsulate the run function to exit normally Args: fields (list[str]): A list of index field, e.g.["fine_label", "coarse_label"]. Default: None. Returns: MSRStatus, SUCCESS or FAILED. """ t = ExceptionThread(target=self.run, kwargs={'fields': fields}) t.daemon = True t.start() t.join() if t.exitcode != 0: raise t.exception return t.res
def _construct_raw_data(images, fine_labels, coarse_labels): """ Construct raw data from cifar100 data. Args: images (list): image list from cifar100. fine_labels (list): fine label list from cifar100. coarse_labels (list): coarse label list from cifar100. Returns: list[dict], data dictionary constructed from cifar100. """ if not cv2: raise ModuleNotFoundError("opencv-python module not found, please use pip install it.") raw_data = [] for i, img in enumerate(images): fine_label = np.int(fine_labels[i][0]) coarse_label = np.int(coarse_labels[i][0]) _, img = cv2.imencode(".jpeg", img[..., [2, 1, 0]]) row_data = {"id": int(i), "data": img.tobytes(), "fine_label": int(fine_label), "coarse_label": int(coarse_label)} raw_data.append(row_data) return raw_data def _generate_mindrecord(file_name, raw_data, fields, schema_desc): """ Generate MindRecord file from raw data. Args: file_name (str): File name of MindRecord File. fields (list[str]): Fields would be set as index which could not belong to blob fields and type could not be 'array' or 'bytes'. raw_data (dict): Dict of raw data. schema_desc (str): String of schema description. Returns: MSRStatus, SUCCESS or FAILED. """ schema = {"id": {"type": "int64"}, "fine_label": {"type": "int64"}, "coarse_label": {"type": "int64"}, "data": {"type": "bytes"}} logger.info("transformed MindRecord schema is: {}".format(schema)) writer = FileWriter(file_name, 1) writer.add_schema(schema, schema_desc) if fields and isinstance(fields, list): writer.add_index(fields) writer.write_raw_data(raw_data) return writer.commit()