比较与torchvision.ops.roi_align的差异
torchvision.ops.roi_align
torchvision.ops.roi_align(input: torch.Tensor, boxes: torch.Tensor, output_size: None, spatial_scale: float = 1.0, sampling_ratio: int = -1, aligned: bool = False)
更多内容详见torchvision.ops.roi_align。
mindspore.ops.ROIAlign
class mindspore.ops.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num=2, roi_end_mode=1)(features, rois)
更多内容详见mindspore.ops.ROIAlign。
差异对比
PyTorch:感兴趣区域对齐(RoI Align)。
MindSpore:感兴趣区域对齐(RoI Align)。与PyTorch相比,参数输入形式不同,对齐模式的实现也不同。
| 分类 | 子类 | PyTorch | MindSpore | 差异 | 
|---|---|---|---|---|
| 参数 | 参数1 | input | - | 输入特征,此参数位于MindSpore算子的输入参数列表中 | 
| 参数2 | boxes | - | 边界框坐标,此参数位于MindSpore算子的输入参数列表中 | |
| 参数3 | output_size | [pooled_height, pooled_width] | 特征尺寸,MindSopre分别用2个参数表示 | |
| 参数4 | spatial_scale | spatial_scale | - | |
| 参数5 | sampling_ratio | sample_num | - | |
| 参数6 | aligned | roi_end_mode | 对齐的模式。PyTorch对应的参数值为False和True,MindSpore对应的参数值为0和1 | |
| 输入 | 输入1 | - | features | 输入特征 | 
| 输入2 | - | rois | roi坐标 | |
| 输出 | 输出1 | Tensor | Tensor | - | 
代码示例
# PyTorch
import numpy as np
import torch
import torchvision as tv
pooled_height, pooled_width, spatial_scale, sample_num, roi_end_mode = 3, 3, 0.25, 2, 1
features = np.array([[[[1., 2.], [3., 4.]]]]).astype(np.float32)
rois = np.array([[0, 0.2, 0.3, 0.2, 0.3]]).astype(np.float32)
features_t = torch.from_numpy(features)
rois_t = torch.from_numpy(rois)
output = tv.ops.roi_align(features_t, rois_t, (pooled_height, pooled_width), spatial_scale, sample_num, 0)
print(output)
# Out: tensor([[[[1.7000, 2.0333, 2.3667],
#                [2.3667, 2.7000, 3.0333],
#                [3.0333, 3.3667, 3.7000]]]])
# MindSpore
import mindspore as ms
from mindspore import ops
features = ms.Tensor(np.array([[[[1., 2.], [3., 4.]]]]), ms.float32)
rois = ms.Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), ms.float32)
roi_align = ops.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0)
output = roi_align(features, rois)
print(output)
# Out: [[[[1.7       2.0333333 2.3666668]
#         [2.3666668 2.7       3.0333335]
#         [3.0333333 3.3666668 3.7      ]]]]