比较与torchaudio.transforms.Spectrogram的差异
torchaudio.transforms.Spectrogram
class torchaudio.transforms.Spectrogram(n_fft: int = 400, win_length: Optional[int] = None, hop_length: Optional[int] = None,
                                        pad: int = 0, window_fn: Callable[[...], torch.Tensor] = <built-in method hann_window of type object>,
                                        power: Optional[float] = 2.0, normalized: bool = False, wkwargs: Optional[dict] = None,
                                        center: bool = True, pad_mode: str = 'reflect', onesided: bool = True)
mindspore.dataset.audio.Spectrogram
class mindspore.dataset.audio.Spectrogram(n_fft=400, win_length=None, hop_length=None,
                                          pad=0, window=WindowType.HANN,
                                          power=2.0, normalized=False,
                                          center=True, pad_mode=BorderType.REFLECT, onesided=True)
差异对比
PyTorch:从音频信号创建其频谱。支持自定义窗函数或对窗函数传入不同的配置参数。支持对STFT结果进行幅值规范化。
MindSpore:从音频信号创建其频谱。
| 分类 | 子类 | PyTorch | MindSpore | 差异 | 
|---|---|---|---|---|
| 参数 | 参数1 | n_fft | n_fft | - | 
| 参数2 | win_length | win_length | - | |
| 参数3 | hop_length | hop_length | - | |
| 参数4 | pad | pad | - | |
| 参数5 | window_fn | window | MindSpore仅支持5种窗函数 | |
| 参数6 | power | power | - | |
| 参数7 | normalized | normalized | - | |
| 参数8 | wkwargs | - | 自定义窗函数的入参,MindSpore不支持 | |
| 参数9 | center | center | - | |
| 参数10 | pad_mode | pad_mode | - | |
| 参数11 | onesided | onesided | - | 
代码示例
import numpy as np
fake_input = np.array([[[1, 1, 2, 2, 3, 3, 4]]]).astype(np.float32)
# PyTorch
import torch
import torchaudio.transforms as T
transformer = T.Spectrogram(n_fft=8, window_fn=torch.hamming_window)
torch_result = transformer(torch.from_numpy(fake_input))
print(torch_result)
# Out: tensor([[[[3.5874e+01, 1.3237e+02],
#                [1.8943e+00, 3.2839e+01],
#                [8.4640e-01, 2.1553e-01],
#                [2.0643e-02, 2.4623e-01],
#                [6.5697e-01, 1.2876e+00]]]])
# MindSpore
import mindspore.dataset.audio as audio
transformer = audio.Spectrogram(n_fft=8, window=audio.WindowType.HAMMING)
ms_result = transformer(fake_input)
print(ms_result)
# Out: [[[[3.5873653e+01 1.3237122e+02]
#         [1.8942689e+00 3.2838711e+01]
#         [8.4640014e-01 2.1552797e-01]
#         [2.0642618e-02 2.4623220e-01]
#         [6.5697211e-01 1.2876146e+00]]]]