比较与torchaudio.datasets.SPEECHCOMMANDS的差异
torchaudio.datasets.SPEECHCOMMANDS
class torchaudio.datasets.SPEECHCOMMANDS(
    root: str,
    url: str = 'speech_commands_v0.02',
    folder_in_archive: str = 'SpeechCommands',
    download: bool = False,
    subset: str = None)
mindspore.dataset.SpeechCommandsDataset
class mindspore.dataset.SpeechCommandsDataset(
    dataset_dir,
    usage=None,
    num_samples=None,
    num_parallel_workers=None,
    shuffle=None,
    sampler=None,
    num_shards=None,
    shard_id=None,
    cache=None)
差异对比
PyTorch:读取SpeechCommands数据集。
MindSpore:读取SpeechCommands数据集,不支持下载。
| 分类 | 子类 | PyTorch | MindSpore | 差异 | 
|---|---|---|---|---|
| 参数 | 参数1 | root | dataset_dir | - | 
| 参数2 | url | - | MindSpore不支持 | |
| 参数3 | folder_in_archive | - | MindSpore不支持 | |
| 参数4 | download | - | MindSpore不支持 | |
| 参数5 | subset | usage | - | |
| 参数6 | - | num_samples | 指定从数据集中读取的样本数 | |
| 参数7 | - | num_parallel_workers | 指定读取数据的工作线程数 | |
| 参数8 | - | shuffle | 指定是否混洗数据集 | |
| 参数9 | - | sampler | 指定采样器 | |
| 参数10 | - | num_shards | 指定分布式训练时将数据集进行划分的分片数 | |
| 参数11 | - | shard_id | 指定分布式训练时使用的分片ID号 | |
| 参数12 | - | cache | 指定单节点数据缓存服务 | 
代码示例
# PyTorch
import torchaudio.datasets as datasets
from torch.utils.data import DataLoader
root = "/path/to/dataset_directory/"
dataset = datasets.SPEECHCOMMANDS(root, url='speech_commands_v0.02')
dataloader = DataLoader(dataset)
# MindSpore
import mindspore.dataset as ds
# Download SpeechCommands dataset files, unzip into the following structure
# .
# └── /path/to/dataset_directory/
#      ├── cat
#           ├── b433eff_nohash_0.wav
#           ├── 5a33edf_nohash_1.wav
#           └──....
#      ├── dog
#           ├── b433w2w_nohash_0.wav
#           └──....
#      ├── four
#      └── ....
root = "/path/to/dataset_directory/"
ms_dataloader = ds.SpeechCommandsDataset(root, usage='all')