比较与torchaudio.transforms.Resample的差异
torchaudio.transforms.Resample
class torchaudio.transforms.Resample(orig_freq: int = 16000, new_freq: int = 16000, resampling_method: str = 'sinc_interpolation')
mindspore.dataset.audio.Resample
class mindspore.dataset.audio.Resample(orig_freq=16000, new_freq=16000, resample_method=ResampleMethod.SINC_INTERPOLATION,
                                       lowpass_filter_width=6, rolloff=0.99, beta=None)
差异对比
PyTorch:将信号从一个频率重采样至另一个频率。
MindSpore:将信号从一个频率重采样至另一个频率。支持额外的信号滤波处理。
| 分类 | 子类 | PyTorch | MindSpore | 差异 | 
|---|---|---|---|---|
| 参数 | 参数1 | orig_freq | orig_freq | - | 
| 参数2 | new_freq | new_freq | - | |
| 参数3 | resampling_method | resample_method | - | |
| 参数4 | - | lowpass_filter_width | 滤波器的带宽 | |
| 参数5 | - | rolloff | 滤波器的滚降频率 | |
| 参数6 | - | beta | Kaiser窗的形状参数 | 
代码示例
import numpy as np
fake_input = np.array([[[[-0.2197528, 0.3821656]]],
                      [[[0.57418776, 0.46741104]]],
                      [[[0.76986176, -0.5793846]]]]).astype(np.float32)
# PyTorch
import torch
import torchaudio.transforms as T
transformer = T.Resample(orig_freq=16000, new_freq=24000)
torch_result = transformer(torch.from_numpy(fake_input))
print(torch_result)
# Out: tensor([[[[-0.2140,  0.2226,  0.3510]]],
#              [[[ 0.5728,  0.6145,  0.2789]]],
#              [[[ 0.7568, -0.1601, -0.6101]]]])
# MindSpore
import mindspore.dataset.audio as audio
transformer = audio.Resample(orig_freq=16000, new_freq=24000)
ms_result = transformer(fake_input)
print(ms_result)
# Out: [[[[-0.21398525  0.22255361  0.35099414]]]
#       [[[ 0.5728122   0.614469    0.2788692 ]]]
#       [[[ 0.75675076 -0.16008556 -0.61005235]]]]