比较与torchvision.datasets.Cityscapes的差异
torchvision.datasets.Cityscapes
class torchvision.datasets.Cityscapes(
    root: str,
    split: str,
    mode: str,
    target_type: str or list,
    transform: Optional[Callable] = None,
    target_transform: Optional[Callable] = None,
    transforms: Optional[Callable] = None
    )
mindspore.dataset.CityscapesDataset
class mindspore.dataset.CityscapesDataset(
    dataset_dir,
    usage='train',
    quality_mode='fine',
    task='instance',
    num_samples=None,
    num_parallel_workers=None,
    shuffle=None,
    decode=None,
    sampler=None,
    num_shards=None,
    shard_id=None,
    cache=None
    )
差异对比
PyTorch:读取Cityscapes数据集。
MindSpore:读取Cityscapes数据集,不支持下载。
| 分类 | 子类 | PyTorch | MindSpore | 差异 | 
|---|---|---|---|---|
| 参数 | 参数1 | root | dataset_dir | - | 
| 参数2 | split | usage | - | |
| 参数3 | mode | quality_mode | - | |
| 参数4 | target_type | task | - | |
| 参数5 | transform | - | MindSpore通过  | |
| 参数6 | target_transform | - | MindSpore通过  | |
| 参数7 | transforms | - | MindSpore通过  | |
| 参数8 | - | num_samples | 指定从数据集中读取的样本数 | |
| 参数9 | - | num_parallel_workers | 指定读取数据的工作线程数 | |
| 参数10 | - | shuffle | 指定是否混洗数据集 | |
| 参数11 | - | decode | 解码读取的图片 | |
| 参数12 | - | sampler | 指定从数据集中选取样本的采样器 | |
| 参数13 | - | num_shards | 指定分布式训练时将数据集进行划分的分片数 | |
| 参数14 | - | shard_id | 指定分布式训练时使用的分片ID号 | |
| 参数15 | - | cache | 指定单节点数据缓存服务 | 
代码示例
# PyTorch
import torchvision.transforms as T
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
root = "/path/to/dataset_directory/"
dataset = datasets.Cityscapes(root, split='train', mode='fine', target_type='semantic')
dataloader = DataLoader(dataset)
# MindSpore
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
# Download the dataset files, unzip into the following structure
# .
# └── "/path/to/dataset_directory"
#      ├── leftImg8bit
#      |    ├── train
#      |    |    ├── aachen
#      |    |    |    ├── aachen_000000_000019_leftImg8bit.png
#      |    |    |    ├── aachen_000001_000019_leftImg8bit.png
#      |    |    |    ├── ...
#      |    |    ├── bochum
#      |    |    |    ├── ...
#      |    |    ├── ...
#      |    ├── test
#      |    |    ├── ...
#      |    ├── val
#      |    |    ├── ...
#      └── gtFine
#           ├── train
#           |    ├── aachen
#           |    |    ├── aachen_000000_000019_gtFine_color.png
#           |    |    ├── aachen_000000_000019_gtFine_instanceIds.png
#           |    |    ├── aachen_000000_000019_gtFine_labelIds.png
#           |    |    ├── aachen_000000_000019_gtFine_polygons.json
#           |    |    ├── aachen_000001_000019_gtFine_color.png
#           |    |    ├── aachen_000001_000019_gtFine_instanceIds.png
#           |    |    ├── aachen_000001_000019_gtFine_labelIds.png
#           |    |    ├── aachen_000001_000019_gtFine_polygons.json
#           |    |    ├── ...
#           |    ├── bochum
#           |    |    ├── ...
#           |    ├── ...
#           ├── test
#           |    ├── ...
#           └── val
#                ├── ...
root = "/path/to/dataset_directory/"
ms_dataloader = ds.CityscapesDataset(root, usage='train')
ms_dataloader = ms_dataloader.map(vision.RandomCrop((28, 28)), ["image"])