mindspore.Tensor.argmin

查看源文件
mindspore.Tensor.argmin(axis=None, keepdims=False)

返回tensor在指定轴上的最小值索引。

参数:
  • axis (Union[int, None],可选) - 指定计算轴。如果为 None ,计算tensor中的所有元素。默认 None

  • keepdims (bool,可选) - 输出tensor是否保留维度。默认 False

返回:

Tensor

支持平台:

Ascend GPU CPU

样例:

>>> import mindspore
>>> x = mindspore.tensor([[2, 5, 1, 6],
...                       [3, -7, -2, 4],
...                       [8, -4, 1, -3]])
>>> # case 1: By default, compute the minimum of all elements.
>>> x.argmin()
Tensor(shape=[], dtype=Int32, value= 5)
>>>
>>> # case 2: Compute the minimum along axis 1.
>>> x.argmin(axis=1)
Tensor(shape=[3], dtype=Int32, value= [2, 1, 1])
>>>
>>> # case 3: If keepdims=True, the output shape will be same of that of the input.
>>> x.argmin(axis=1, keepdims=True)
Tensor(shape=[3, 1], dtype=Int32, value=
[[2],
 [1],
 [1]])
mindspore.Tensor.argmin(dim=None, keepdim=False)

返回tensor在指定轴上的最小值索引。

参数:
  • dim (Union[int, None],可选) - 指定计算维度。如果为 None ,计算tensor中的所有元素。默认 None

  • keepdim (bool,可选) - 输出tensor是否保留维度。默认 False

返回:

Tensor

支持平台:

Ascend

样例:

>>> import mindspore
>>> x = mindspore.tensor([[2, 5, 1, 6],
...                       [3, -7, -2, 4],
...                       [8, -4, 1, -3]])
>>> # case 1: By default, compute the minimum of all elements.
>>> x.argmin()
Tensor(shape=[], dtype=Int32, value= 5)
>>>
>>> # case 2: Compute the minimum along dim 1.
>>> x.argmin(dim=1)
Tensor(shape=[3], dtype=Int32, value= [2, 1, 1])
>>>
>>> # case 3: If keepdim=True, the output shape will be same of that of the input.
>>> x.argmin(dim=1, keepdim=True)
Tensor(shape=[3, 1], dtype=Int32, value=
[[2],
 [1],
 [1]])