mindspore.hal.contiguous_tensors_handle.ContiguousTensorsHandle
- class mindspore.hal.contiguous_tensors_handle.ContiguousTensorsHandle(tensor_list, enable_mem_align=True)[源代码]
- 连续内存管理器。 - 参数:
- tensor_list (list[Tensor], tuple[Tensor]) - 需要申请连续内存的Tensor列表。 
- enable_mem_align (bool,可选) - 是否启用内存对齐功能。暂不支持 - False。默认- True。
 
- 返回:
- ContiguousTensorsHandle,一个连续内存管理器。 
 - 样例: - >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindspore.hal.contiguous_tensors_handle import ContiguousTensorsHandle >>> x = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32)) >>> handle = ContiguousTensorsHandle([x, y], True) >>> print(handle[0].shape) [1] >>> print(handle[1: 3].asnumpy()) [2, 3] - slice_by_tensor_index(start=None, end=None)[源代码]
- 返回根据tensor列表的index切片出的连续内存。 - 参数:
- start (int, None) - 起始位置。默认 - None。
- end (int, None) - 结束位置。默认 - None。
 
- 返回:
- Tensor 
 - 样例: - >>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindspore.hal.contiguous_tensors_handle import ContiguousTensorsHandle >>> x = Tensor(np.array([1, 2, 3]).astype(np.float32)) >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32)) >>> handle = ContiguousTensorsHandle([x, y], True) >>> print(output.slice_by_tensor_index(0, 1).asnumpy()) [1, 2, 3]