mindspore.dataset.vision.AdjustBrightness
- class mindspore.dataset.vision.AdjustBrightness(brightness_factor)[源代码]
- 调整输入图像的亮度。 - 支持 Ascend 硬件加速,需要通过 .device("Ascend") 方式开启。 - 参数:
- brightness_factor (float) - 亮度调节因子,需为非负数。输入 - 0.0值将得到全黑图像,- 1.0值将得到原始图像,- 2.0值将调整图像亮度为原来的2倍。
 
- 异常:
- TypeError - 如果 brightness_factor 不是float类型。 
- ValueError - 如果 brightness_factor 小于 - 0.0。
- RuntimeError - 如果输入图像的形状不是<H, W, C>。 
 
- 支持平台:
- CPU- Ascend
 - 样例: - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.AdjustBrightness(brightness_factor=2.0)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 256, (20, 20, 3)) / 255.0 >>> data = data.astype(np.float32) >>> output = vision.AdjustBrightness(2.666)(data) >>> print(output.shape, output.dtype) (20, 20, 3) float32 - 教程样例:
 - device(device_target='CPU')[源代码]
- 指定该变换执行的设备。 - 当执行设备是 Ascend 时,输入数据的维度限制在[4, 6]和[8192, 4096]范围内。 - 参数:
- device_target (str, 可选) - 算子将在指定的设备上运行。当前支持 - "CPU"和- "Ascend"。默认值:- "CPU"。
 
- 异常:
- TypeError - 当 device_target 的类型不为str。 
- ValueError - 当 device_target 的取值不为[ - "CPU",- "Ascend"]。
 
- 支持平台:
- CPU- Ascend
 - 样例: - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.AdjustBrightness(2.0).device("Ascend")] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 256, (20, 20, 3)) / 255.0 >>> data = data.astype(np.float32) >>> output = vision.AdjustBrightness(2.666).device("Ascend")(data) >>> print(output.shape, output.dtype) (20, 20, 3) float32