mindspore.nn.probability.distribution.HalfNormal
- class mindspore.nn.probability.distribution.HalfNormal(mean=None, sd=None, seed=None, dtype=mstype.float32, name='HalfNormal')[source]
- HalfNormal distribution. A HalfNormal distribution is a continuous distribution with the range \([\mu, \inf)\) and the probability density function: \[f(x, \mu, \sigma) = 1 / \sigma\sqrt{2\pi} \exp(-(x - \mu)^2 / 2\sigma^2).\]- where \(\mu, \sigma\) are the mean and the standard deviation of the half normal distribution respectively. - Parameters
- mean (Union[int, float, list, numpy.ndarray, Tensor], optional) – The mean of the distribution. \(\mu\) in the formula. If this arg is - None, then the mean of the distribution will be passed in runtime. Default:- None.
- sd (Union[int, float, list, numpy.ndarray, Tensor], optional) – The standard deviation of the distribution. \(\sigma\) in the formula. If this arg is - None, then the sd of the distribution will be passed in runtime. Default:- None.
- seed (int, optional) – The seed used in sampling. The global seed is used if it is None. Default: - None.
- dtype (mindspore.dtype, optional) – The type of the event samples. Default: - mstype.float32.
- name (str, optional) – The name of the distribution. Default: - 'HalfNormal'.
 
 - Note - sd must be greater than zero. 
- dtype must be a float type because HalfNormal distributions are continuous. 
- If the arg mean or sd is passed in runtime, then it will be used as the parameter value. Otherwise, the value passed in the constructor will be used. 
 - Raises
- ValueError – When sd <= 0. 
- TypeError – When the input dtype is not a float or a subclass of float. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> from mindspore.nn.probability.distribution import HalfNormal >>> from mindspore import Tensor >>> # To initialize a HalfNormal distribution of the mean 3.0 and the standard deviation 4.0. >>> n1 = HalfNormal(3.0, 4.0, dtype=mindspore.float32) >>> # A HalfNormal distribution can be initialized without arguments. >>> # In this case, `mean` and `sd` must be passed in through arguments. >>> hn = HalfNormal(dtype=mindspore.float32) >>> # Here are some tensors used below for testing >>> value = Tensor([1.0, 2.0, 3.0], dtype=mindspore.float32) >>> mean_a = Tensor([2.0], dtype=mindspore.float32) >>> sd_a = Tensor([2.0, 2.0, 2.0], dtype=mindspore.float32) >>> mean_b = Tensor([1.0], dtype=mindspore.float32) >>> sd_b = Tensor([1.0, 1.5, 2.5], dtype=mindspore.float32) >>> ans = n1.log_prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to the distribution b. >>> ans = n1.log_prob(value, mean_b, sd_b) >>> print(ans.shape) (3,) >>> # `mean` and `sd` must be passed in during function calls >>> ans = hn.log_prob(value, mean_a, sd_a) >>> print(ans.shape) (3,) - log_prob(value, mean=None, sd=None)[source]
- Evaluate log probability of the value of the HalfNormal distribution. - Parameters
- value (Tensor) - the value to compute. 
- mean (Tensor, optional) - the mean of the distribution. Default: - None.
- sd (Tensor, optional) - the standard deviation of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the probability.