mindspore.nn.probability.distribution.Gumbel
- class mindspore.nn.probability.distribution.Gumbel(loc, scale, seed=0, dtype=mstype.float32, name='Gumbel')[source]
- Gumbel distribution. A Gumbel distributio is a continuous distribution with the range of all real numbers and the probability density function: \[f(x, a, b) = 1 / b \exp(\exp(-(x - a) / b) - x)\]- Where \(a, b\) are loc and scale parameter respectively. - Parameters
- loc (int, float, list, numpy.ndarray, Tensor) – The location of Gumbel distribution. \(a\) in the formula. 
- scale (int, float, list, numpy.ndarray, Tensor) – The scale of Gumbel distribution. \(b\) in the formula. 
- seed (int) – the seed used in sampling. The global seed is used if it is None. Default: - 0.
- dtype (mindspore.dtype) – type of the distribution. Default: - mstype.float32.
- name (str) – the name of the distribution. Default: - 'Gumbel'.
 
 - Note - scale must be greater than zero. dist_spec_args are loc and scale. dtype must be a float type because Gumbel distributions are continuous. - Raises
- ValueError – When scale <= 0. 
- TypeError – When the input dtype is not a subclass of float. 
 
 - Supported Platforms:
- Ascend- GPU
 - Examples - >>> import mindspore >>> import numpy as np >>> import mindspore.nn.probability.distribution as msd >>> import mindspore.nn as nn >>> from mindspore import Tensor >>> class Prob(nn.Cell): ... def __init__(self): ... super(Prob, self).__init__() ... self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=mindspore.float32) ... ... def construct(self, x_): ... return self.gum.prob(x_) >>> value = np.array([1.0, 2.0]).astype(np.float32) >>> pdf = Prob() >>> output = pdf(Tensor(value, dtype=mindspore.float32)) - property loc
- Return the loc parameter of the distribution. - Returns
- Tensor, the loc parameter of the distribution. 
 
 - property scale
- Return the scale parameter of the distribution. - Returns
- Tensor, the scale parameter of the distribution. 
 
 - cdf(value, loc, scale)[source]
- Compute the cumulatuve distribution function(CDF) of the given value. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cumulatuve distribution function for the given input. 
 
 - cross_entropy(dist, loc_b, scale_b, loc, scale)[source]
- Compute the cross entropy of two distribution. - Parameters
- dist (str) - the type of the other distribution. 
- loc_b (Tensor) - the loc parameter of the other distribution. 
- scale_b (Tensor) - the scale parameter of the other distribution. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cross entropy. 
 
 - entropy(loc, scale)[source]
- Compute the value of the entropy. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the entropy. 
 
 - kl_loss(dist, loc_b, scale_b, loc, scale)[source]
- Compute the value of the K-L loss between two distribution, namely KL(a||b). - Parameters
- dist (str) - the type of the other distribution. 
- loc_b (Tensor) - the loc parameter of the other distribution. 
- scale_b (Tensor) - the scale parameter of the other distribution. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - log_cdf(value, loc, scale)[source]
- Compute the log value of the cumulatuve distribution function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the cumulatuve distribution function. 
 
 - log_prob(value, loc, scale)[source]
- the log value of the probability. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the probability. 
 
 - log_survival(value, loc, scale)[source]
- Compute the log value of the survival function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - mean(loc, scale)[source]
- Compute the mean value of the distribution. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the mean of the distribution. 
 
 - mode(loc, scale)[source]
- Compute the mode value of the distribution. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the mode of the distribution. 
 
 - prob(value, loc, scale)[source]
- The probability of the given value. For the continuous distribution, it is the probability density function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the probability. 
 
 - sample(shape, loc, scale)[source]
- Generate samples. - Parameters
- shape (tuple) - the shape of the sample. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the sample following the distribution. 
 
 - sd(loc, scale)[source]
- The standard deviation. - Parameters
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the standard deviation of the distribution. 
 
 - survival_function(value, loc, scale)[source]
- Compute the value of the survival function. - Parameters
- value (Tensor) - the value to compute. 
- loc (Tensor) - the loc parameter of the distribution. Default: - None.
- scale (Tensor) - the scale parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the survival function.