mindspore.nn.probability.distribution.Gamma
- class mindspore.nn.probability.distribution.Gamma(concentration=None, rate=None, seed=None, dtype=mstype.float32, name='Gamma')[source]
- Gamma distribution. A Gamma distributio is a continuous distribution with the range \((0, \inf)\) and the probability density function: \[f(x, \alpha, \beta) = \beta^\alpha / \Gamma(\alpha) x^{\alpha - 1} \exp(-\beta x).\]- where \(G\) is the Gamma function, and \(\alpha\) and \(\beta\) are the concentration and the rate of the distribution respectively. - Parameters
- concentration (int, float, list, numpy.ndarray, Tensor) – The concentration, also know as \(\alpha\) of the Gamma distribution. Default: - None.
- rate (int, float, list, numpy.ndarray, Tensor) – The rate, also know as \(\beta\) of the Gamma distribution. Default: - None.
- seed (int) – The seed used in sampling. The global seed is used if it is None. Default: - None.
- dtype (mindspore.dtype) – The type of the event samples. Default: - mstype.float32.
- name (str) – The name of the distribution. Default: - 'Gamma'.
 
 - Note - concentration and rate must be greater than zero. dist_spec_args are concentration and rate. dtype must be a float type because Gamma distributions are continuous. - Raises
- ValueError – When concentration <= 0 or rate <= 0. 
- TypeError – When the input dtype is not a subclass of float. 
 
 - Supported Platforms:
- Ascend
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.distribution as msd >>> from mindspore import Tensor >>> # To initialize a Gamma distribution of the concentration 3.0 and the rate 4.0. >>> g1 = msd.Gamma([3.0], [4.0], dtype=mindspore.float32) >>> # A Gamma distribution can be initialized without arguments. >>> # In this case, `concentration` and `rate` must be passed in through arguments. >>> g2 = msd.Gamma(dtype=mindspore.float32) >>> # Here are some tensors used below for testing >>> value = Tensor([1.0, 2.0, 3.0], dtype=mindspore.float32) >>> concentration_a = Tensor([2.0], dtype=mindspore.float32) >>> rate_a = Tensor([2.0, 2.0, 2.0], dtype=mindspore.float32) >>> concentration_b = Tensor([1.0], dtype=mindspore.float32) >>> rate_b = Tensor([1.0, 1.5, 2.0], dtype=mindspore.float32) >>> >>> # Private interfaces of probability functions corresponding to public interfaces, including >>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, >>> # have the same arguments as follows. >>> # Args: >>> # value (Tensor): the value to be evaluated. >>> # concentration (Tensor): the concentration of the distribution. Default: self._concentration. >>> # rate (Tensor): the rate of the distribution. Default: self._rate. >>> # Examples of `prob`. >>> # Similar calls can be made to other probability functions >>> # by replacing 'prob' by the name of the function >>> ans = g1.prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to the distribution b. >>> ans = g1.prob(value, concentration_b, rate_b) >>> print(ans.shape) (3,) >>> # `concentration` and `rate` must be passed in during function calls for g2. >>> ans = g2.prob(value, concentration_a, rate_a) >>> print(ans.shape) (3,) >>> # Functions `mean`, `sd`, `mode`, `var`, and `entropy` have the same arguments. >>> # Args: >>> # concentration (Tensor): the concentration of the distribution. Default: self._concentration. >>> # rate (Tensor): the rate of the distribution. Default: self._rate. >>> # Example of `mean`, `sd`, `mode`, `var`, and `entropy` are similar. >>> ans = g1.mean() >>> print(ans.shape) (1,) >>> ans = g1.mean(concentration_b, rate_b) >>> print(ans.shape) (3,) >>> # `concentration` and `rate` must be passed in during function calls. >>> ans = g2.mean(concentration_a, rate_a) >>> print(ans.shape) (3,) >>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same: >>> # Args: >>> # dist (str): the type of the distributions. Only "Gamma" is supported. >>> # concentration_b (Tensor): the concentration of distribution b. >>> # rate_b (Tensor): the rate of distribution b. >>> # concentration_a (Tensor): the concentration of distribution a. Default: self._concentration. >>> # rate_a (Tensor): the rate of distribution a. Default: self._rate. >>> # Examples of `kl_loss`. `cross_entropy` is similar. >>> ans = g1.kl_loss('Gamma', concentration_b, rate_b) >>> print(ans.shape) (3,) >>> ans = g1.kl_loss('Gamma', concentration_b, rate_b, concentration_a, rate_a) >>> print(ans.shape) (3,) >>> # Additional `concentration` and `rate` must be passed in. >>> ans = g2.kl_loss('Gamma', concentration_b, rate_b, concentration_a, rate_a) >>> print(ans.shape) (3,) >>> # Examples of `sample`. >>> # Args: >>> # shape (tuple): the shape of the sample. Default: () >>> # concentration (Tensor): the concentration of the distribution. Default: self._concentration. >>> # rate (Tensor): the rate of the distribution. Default: self._rate. >>> ans = g1.sample() >>> print(ans.shape) (1,) >>> ans = g1.sample((2,3)) >>> print(ans.shape) (2, 3, 1) >>> ans = g1.sample((2,3), concentration_b, rate_b) >>> print(ans.shape) (2, 3, 3) >>> ans = g2.sample((2,3), concentration_a, rate_a) >>> print(ans.shape) (2, 3, 3) - property concentration
- Return the concentration, aka the \(\alpha\) parameter, of the distribution. - Returns
- Tensor, concentration. 
 
 - property rate
- Return the rate, aka the \(\beta\) parameter, of the distribution. - Returns
- Tensor, rate. 
 
 - cdf(value, concentration, rate)[source]
- Compute the cumulatuve distribution function(CDF) of the given value. - Parameters
- value (Tensor) - the value to compute. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cumulatuve distribution function for the given input. 
 
 - cross_entropy(dist, concentration_b, rate_b, concentration, rate)[source]
- Compute the cross entropy of two distribution. - Parameters
- dist (str) - the type of the other distribution. 
- concentration_b (Tensor) - the \(\alpha\) parameter of the other distribution. 
- rate_b (Tensor) - the \(\beta\) parameter of the other distribution. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cross entropy. 
 
 - entropy(concentration, rate)[source]
- Compute the value of the entropy. - Parameters
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the entropy. 
 
 - kl_loss(dist, concentration_b, rate_b, concentration, rate)[source]
- Compute the value of the K-L loss between two distribution, namely KL(a||b). - Parameters
- dist (str) - the type of the other distribution. 
- concentration_b (Tensor) - the \(\alpha\) parameter of the other distribution. 
- rate_b (Tensor) - the \(\beta\) parameter of the other distribution. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - log_cdf(value, concentration, rate)[source]
- Compute the log value of the cumulatuve distribution function. - Parameters
- value (Tensor) - the value to compute. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the cumulatuve distribution function. 
 
 - log_prob(value, concentration, rate)[source]
- the log value of the probability. - Parameters
- value (Tensor) - the value to compute. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the probability. 
 
 - log_survival(value, concentration, rate)[source]
- Compute the log value of the survival function. - Parameters
- value (Tensor) - the value to compute. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - mean(concentration, rate)[source]
- Compute the mean value of the distribution. - Parameters
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the mean of the distribution. 
 
 - mode(concentration, rate)[source]
- Compute the mode value of the distribution. - Parameters
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the mode of the distribution. 
 
 - prob(value, concentration, rate)[source]
- The probability of the given value. For the continuous distribution, it is the probability density function. - Parameters
- value (Tensor) - the value to compute. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the probability. 
 
 - sample(shape, concentration, rate)[source]
- Generate samples. - Parameters
- shape (tuple) - the shape of the sample. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the sample following the distribution. 
 
 - sd(concentration, rate)[source]
- The standard deviation. - Parameters
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the standard deviation of the distribution. 
 
 - survival_function(value, concentration, rate)[source]
- Compute the value of the survival function. - Parameters
- value (Tensor) - the value to compute. 
- concentration (Tensor) - the \(\alpha\) parameter of the distribution. Default: - None.
- rate (Tensor) - the \(\beta\) parameter of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the survival function.