mindspore.nn.probability.distribution.Exponential
- class mindspore.nn.probability.distribution.Exponential(rate=None, seed=None, dtype=mstype.float32, name='Exponential')[source]
- Exponential Distribution. An Exponential distributio is a continuous distribution with the range \([0, \inf)\) and the probability density function: \[f(x, \lambda) = \lambda \exp(-\lambda x)\]- where \(\lambda\) is the rate of the distribution. - Parameters
- rate (int, float, list, numpy.ndarray, Tensor, optional) – The inverse scale. \(\lambda\) in the formula. Default: - None.
- seed (int, optional) – The seed used in sampling. The global seed is used if it is None. Default: - None.
- dtype (mindspore.dtype, optional) – The type of the event samples. Default: - mstype.float32.
- name (str, optional) – The name of the distribution. Default: - 'Exponential'.
 
 - Note - rate must be strictly greater than 0. 
- dtype must be a float type because Exponential distributions are continuous. 
 - Raises
- ValueError – When rate <= 0. 
- TypeError – When the input dtype is not a subclass of float. 
 
 - Supported Platforms:
- Ascend- GPU
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.distribution as msd >>> from mindspore import Tensor >>> # To initialize a Exponential distribution of the probability 0.5. >>> e1 = msd.Exponential(0.5, dtype=mindspore.float32) >>> # An Exponential distribution can be initialized without arguments. >>> # In this case, `rate` must be passed in through `args` during function calls. >>> e2 = msd.Exponential(dtype=mindspore.float32) >>> # Here are some tensors used below for testing >>> value = Tensor([1, 2, 3], dtype=mindspore.float32) >>> rate_a = Tensor([0.6], dtype=mindspore.float32) >>> rate_b = Tensor([0.2, 0.5, 0.4], dtype=mindspore.float32) >>> # Private interfaces of probability functions corresponding to public interfaces, including >>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, are the same as follows. >>> # Args: >>> # value (Tensor): the value to be evaluated. >>> # rate (Tensor): the rate of the distribution. Default: self.rate. >>> # Examples of `prob`. >>> # Similar calls can be made to other probability functions >>> # by replacing `prob` by the name of the function. >>> ans = e1.prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to distribution b. >>> ans = e1.prob(value, rate_b) >>> print(ans.shape) (3,) >>> # `rate` must be passed in during function calls. >>> ans = e2.prob(value, rate_a) >>> print(ans.shape) (3,) >>> # Functions `mean`, `sd`, 'var', and 'entropy' have the same arguments as follows. >>> # Args: >>> # rate (Tensor): the rate of the distribution. Default: self.rate. >>> # Examples of `mean`. `sd`, `var`, and `entropy` are similar. >>> ans = e1.mean() # return 2 >>> print(ans.shape) () >>> ans = e1.mean(rate_b) # return 1 / rate_b >>> print(ans.shape) (3,) >>> # `rate` must be passed in during function calls. >>> ans = e2.mean(rate_a) >>> print(ans.shape) (1,) >>> # Interfaces of `kl_loss` and `cross_entropy` are the same. >>> # Args: >>> # dist (str): The name of the distribution. Only 'Exponential' is supported. >>> # rate_b (Tensor): the rate of distribution b. >>> # rate_a (Tensor): the rate of distribution a. Default: self.rate. >>> # Examples of `kl_loss`. `cross_entropy` is similar. >>> ans = e1.kl_loss('Exponential', rate_b) >>> print(ans.shape) (3,) >>> ans = e1.kl_loss('Exponential', rate_b, rate_a) >>> print(ans.shape) (3,) >>> # An additional `rate` must be passed in. >>> ans = e2.kl_loss('Exponential', rate_b, rate_a) >>> print(ans.shape) (3,) >>> # Examples of `sample`. >>> # Args: >>> # shape (tuple): the shape of the sample. Default: () >>> # probs1 (Tensor): the rate of the distribution. Default: self.rate. >>> ans = e1.sample() >>> print(ans.shape) () >>> ans = e1.sample((2,3)) >>> print(ans.shape) (2, 3) >>> ans = e1.sample((2,3), rate_b) >>> print(ans.shape) (2, 3, 3) >>> ans = e2.sample((2,3), rate_a) >>> print(ans.shape) (2, 3, 1) - property rate
- Return rate. - Returns
- Tensor, the rate of the distribution. 
 
 - cdf(value, rate=None)[source]
- Compute the cumulatuve distribution function(CDF) of the given value. - Parameters
- value (Tensor) - the value to compute. 
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cumulatuve distribution function for the given input. 
 
 - cross_entropy(dist, rate_b, rate=None)[source]
- Compute the cross entropy of two distribution. - Parameters
- dist (str) - the type of the other distribution. 
- rate_b (Tensor) - the rate b of the other distribution. 
- rate (Tensor, optional) - the rate a of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the cross entropy. 
 
 - entropy(rate=None)[source]
- Compute the value of the entropy. - Parameters
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the entropy. 
 
 - kl_loss(dist, rate_b, rate=None)[source]
- Compute the value of the K-L loss between two distribution, namely KL(a||b). - Parameters
- dist (str) - the type of the other distribution. 
- rate_b (Tensor) - the rate b of the other distribution. 
- rate (Tensor, optional) - the rate a of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - log_cdf(value, rate=None)[source]
- Compute the log value of the cumulatuve distribution function. - Parameters
- value (Tensor) - the value to compute. 
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the cumulatuve distribution function. 
 
 - log_prob(value, rate=None)[source]
- the log value of the probability. - Parameters
- value (Tensor) - the value to compute. 
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the log value of the probability. 
 
 - log_survival(value, rate=None)[source]
- Compute the log value of the survival function. - Parameters
- value (Tensor) - the value to compute. 
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the K-L loss. 
 
 - mean(rate=None)[source]
- Compute the mean value of the distribution. - Parameters
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the mean of the distribution. 
 
 - mode(rate=None)[source]
- Compute the mode value of the distribution. - Parameters
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the mode of the distribution. 
 
 - prob(value, rate=None)[source]
- The probability of the given value. For the continuous distribution, it is the probability density function. - Parameters
- value (Tensor) - the value to compute. 
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the value of the probability. 
 
 - sample(shape, rate=None)[source]
- Generate samples. - Parameters
- shape (tuple) - the shape of the sample. 
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the sample following the distribution. 
 
 - sd(rate=None)[source]
- The standard deviation. - Parameters
- rate (Tensor, optional) - the rate of the distribution. Default: - None.
 
- Returns
- Tensor, the standard deviation of the distribution.