mindspore.nn.probability.bijector.GumbelCDF
- class mindspore.nn.probability.bijector.GumbelCDF(loc=0.0, scale=1.0, name='GumbelCDF')[source]
- GumbelCDF Bijector. This Bijector performs the operation: \[Y = \exp(-\exp(\frac{-(X - loc)}{scale}))\]- Parameters
 - Note - scale must be greater than zero. 
- For inverse and inverse_log_jacobian, input should be in range of (0, 1). 
- The dtype of loc and scale must be float. 
- If loc, scale are passed in as numpy.ndarray or tensor, they have to have the same dtype otherwise an error will be raised. 
 - Raises
- TypeError – When the dtype of loc or scale is not float, or when the dtype of loc and scale is not same. 
 - Supported Platforms:
- Ascend- GPU
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.bijector as msb >>> from mindspore import Tensor >>> >>> # To initialize a GumbelCDF bijector of loc 1.0, and scale 2.0. >>> gumbel_cdf = msb.GumbelCDF(1.0, 2.0) >>> # To use a GumbelCDF bijector in a network. >>> x = Tensor([1, 2, 3], dtype=mindspore.float32) >>> y = Tensor([0.1, 0.2, 0.3], dtype=mindspore.float32) >>> ans1 = gumbel_cdf.forward(x) >>> print(ans1.shape) (3,) >>> ans2 = gumbel_cdf.inverse(y) >>> print(ans2.shape) (3,) >>> ans3 = gumbel_cdf.forward_log_jacobian(x) >>> print(ans3.shape) (3,) >>> ans4 = gumbel_cdf.inverse_log_jacobian(y) >>> print(ans4.shape) (3,) - property loc
- Return the loc parameter of the bijector. - Returns
- Tensor, the loc parameter of the bijector. 
 
 - property scale
- Return the scale parameter of the bijector. - Returns
- Tensor, the scale parameter of the bijector. 
 
 - forward(value)[source]
- forward mapping, compute the value after mapping. - Parameters
- value (Tensor) - the value to compute. 
 
- Returns
- Tensor, the value to compute. 
 
 - forward_log_jacobian(value)[source]
- compute the log value after mapping. - Parameters
- value (Tensor) - the value to compute. 
 
- Returns
- Tensor, the log value of forward mapping.