mindspore.nn.probability.bijector.Exp
- class mindspore.nn.probability.bijector.Exp(name='Exp')[source]
- Exponential Bijector. This Bijector performs the operation: \[Y = \exp(x).\]- Parameters
- name (str) – The name of the Bijector. Default: - 'Exp'.
 - Supported Platforms:
- Ascend- GPU
 - Examples - >>> import mindspore >>> import mindspore.nn as nn >>> from mindspore import Tensor >>> >>> # To initialize an Exp bijector. >>> exp_bijector = nn.probability.bijector.Exp() >>> value = Tensor([1, 2, 3], dtype=mindspore.float32) >>> ans1 = exp_bijector.forward(value) >>> print(ans1.shape) (3,) >>> ans2 = exp_bijector.inverse(value) >>> print(ans2.shape) (3,) >>> ans3 = exp_bijector.forward_log_jacobian(value) >>> print(ans3.shape) (3,) >>> ans4 = exp_bijector.inverse_log_jacobian(value) >>> print(ans4.shape) (3,) - forward(value)[source]
- forward mapping, compute the value after mapping as \(Y = \exp(X)\). - Parameters
- value (Tensor) - the value to compute. \(X\) in the formula. 
 
- Returns
- Tensor, the value of output after mapping. 
 
 - forward_log_jacobian(value)[source]
- compute the log value after mapping. - Parameters
- value (Tensor) - the value to compute. 
 
- Returns
- Tensor, the log value of forward mapping.