mindspore.dataset.dataloader

This module provides iterators for loading datasets. It supports loading both Map Style and Iterable Style datasets, and offers multi-process concurrent loading.

Data Loader

mindspore.dataset.dataloader.DataLoader

Data loader provides an iterator over the given dataset.

Datasets

mindspore.dataset.dataloader.Dataset

Base class for implementing all datasets.

mindspore.dataset.dataloader.IterableDataset

Base class for implementing iterable datasets.

mindspore.dataset.dataloader.TensorDataset

Dataset that defined by a collection of mindspore.Tensor .

Samplers

mindspore.dataset.dataloader.Sampler

Base Class of the Sampler

mindspore.dataset.dataloader.SequentialSampler

Samples the dataset elements sequentially.

mindspore.dataset.dataloader.RandomSampler

Samples the dataset elements randomly.

mindspore.dataset.dataloader.BatchSampler

Sampler that yields a mini-batch of indices each time.

mindspore.dataset.dataloader.DistributedSampler

A sampler that partitioning datasets for distributed training.

Collate Functions

mindspore.dataset.dataloader.default_collate

Default function for concatenating a batch of data along the first dimension when batching is enabled in DataLoader.

mindspore.dataset.dataloader.default_convert

Default function for converting each NumPy array element into a mindspore.Tensor when batching is disabled in DataLoader.

mindspore.dataset.dataloader._utils.collate.collate

Collate the input batch of data by the appropriate function for each element type selected from the type to collate function mapping defined in collate_fn_map.

Utilities

mindspore.dataset.dataloader.get_worker_info

Get the information about the current DataLoader worker process.