mindspore.dataset.dataloader.default_collate
- mindspore.dataset.dataloader.default_collate(batch)[source]
Default function for concatenating a batch of data along the first dimension when batching is enabled in
DataLoader
.This function uses a predefined mapping from data types to their corresponding collate functions to do the following type transformations, then collates the input batch according to the rules described in
collate()
:list
[numpy.ndarray
] ->mindspore.Tensor
list
[float
] ->mindspore.Tensor
list
[int
] ->mindspore.Tensor
- Parameters
batch (list) – A batch of data to be collated.
- Returns
Any
, the collated data.
Examples
>>> from mindspore.dataset.dataloader import default_collate >>> >>> default_collate([0, 1, 2]) Tensor(shape=[3], dtype=Int64, value= [0, 1, 2]) >>> >>> default_collate([{"data": 0, "label": 2}, ... {"data": 1, "label": 3}]) {'data': Tensor(shape=[2], dtype=Int64, value= [0, 1]), 'label': Tensor(shape=[2], dtype=Int64, value= [2, 3])} >>> >>> default_collate([(0, 3), (1, 4), (2, 5)]) [Tensor(shape=[3], dtype=Int64, value= [0, 1, 2]), Tensor(shape=[3], dtype=Int64, value= [3, 4, 5])]